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Today

I. We’ve been exploring the thermodynamic definition of  
temperature:  

. 

We applied this to the Einstein solid and to the ideal gas. The results 
were in perfect agreement with equipartition and illustrated that 
we’d gotten the constant pre-factor correct. 
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I. Andrew gave us a guest lecture on two-state paramagnet. By 
doing the combinatorial calculation of  the entropy , we were 
able to find  

   and   . 

The magnetization goes to zero at high temp, at low temp we got a 
saturated magnetization, as large as it can be,  and if  we turn off  the 
external magnetic field the magnetization also vanishes.  

II. Let’s go back to our Einstein solid and ideal gas examples and just 
take them one more step,  

(i) Einstein solid: , .  

(ii) (Monatomic) Ideal gas: ,  . 
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II. Let’s go back to our Einstein solid and ideal gas examples and just 
take them one more step,  

(i) Einstein solid: , .  

(ii) (Monatomic) Ideal gas: ,  .  

How did we accomplish this? It took roughly 5 steps:  
1. Use quantum mechanics and some combinatorics to find an 

expression for the multiplicity , in terms of   and any 
other relevant variables.  

2. Take the logarithm to find the entropy .  
3. Differentiate  with respect to  and take the reciprocal to find a 

relationship between  and .  
4. Given the relation of  3., we invert (i.e. algebraically solve if  we 

can) for  as a function of   and the other variables. 
5. Differentiate  to get the heat capacity. 
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III. How do I experimentally get access to the entropy?  

What about trying to probe small changes in the entropy by looking 
at small changes in the internal energy: 

  (or )  (const. volume, i.e. no work) 

This is Clausius’ definition of  the entropy. This is directly accessible 
experimentally.  

Generally, the heat transfer will also depend on temperature, and we 
use a heat capacity to characterize the entropy change 

, 

When  is constant we have  

    (const. ). 
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III. Generally, the heat transfer will also depend on temperature, and 
we use a heat capacity to characterize the entropy change 

, 

When  is constant we have  

    (const. ).  

In the case of  non-constant  we get  

.  

As  this integral diverges unless  more quickly, then 
the fact that  as  is called the “third law of  
thermodynamics”.  

IV. We can also study mechanical equilibrium with these tools. 
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IV. We can also study mechanical equilibrium with these tools.  
When will we have equilibrium? Now the two subsystems can not 
only exchange energy, but also volume: ,  

    and   .  

Same strategy as before , so  

. 

We’ve shown that  

 (at equilibrium).  

Investigating the units, we then have 

, which reasonably leads 

to .
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IV. Define . Return to the ideal gas: 

, then we found  

Then 

    (ideal gas law!) 
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