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Today

I. Last time we discussed Hydrogen fuel cells and the ways in 
which  helps us to understand them. As a precursor we looked 
at measuring enthalpies with a coffee cup calorimeter.  

We also tried to setup a discussion of  equilibrium in a new context. 
The old context was that of  fixing the extensive parameter, say ,  
and . In that previous context we found that equilibrium was 
characterized by the maximum entropy configuration of  the system.  

Let’s begin anew to study equilibrium in the context of  a constant 
temperature environment. 
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II.  In a constant temperature environment we cannot think of  the 
system as having a definite energy: after all it is exchanging heat with 
its environment.  

If  allow ourselves to think of  our small system and its environment 
as a single large system, we can apply the previous insights: 
For the large system we know that entropy is maximized. 
The total entropy is  

. 
Let’s consider a small change  

. 
Let’s restrict consideration to exchanges of  
heat, but not volume or particles.  

Recall: .
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II. Let’s consider a small change  
. 

Let’s restrict consideration to exchanges of  
heat, but not volume or particles.  

Recall: . 

Then  

. 

Notice that when  we also have 
 and we can even see that this is a 

minimum of  the free energy. This  
characterizes constant temperature  
equilibrium. 
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II. Then  

. 

Notice that when  we also have 
 and we can even see that this is a 

minimum of  the free energy. This  
characterizes constant temperature  
equilibrium.  

Recall that Nathalie showed that .  
If  no work is done on the system, then  

 can only decrease.  
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II. We could also look for equilibrium conditions in a constant 
temperature and constant pressure environment.  
Notice that this means the system can exchange volume with its 
environment.  

 

Entropy maximization becomes Gibbs 
free energy minimization. It turns out  
that the Gibbs free energy perspective is 
productive for looking at phase transitions. 
Let’s try to establish this quantitatively. 
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III. Euler has a wonderful way of  thinking about extensive systems.  

Returning our roots, consider the internal energy, which is an 
extensive variable. On the other hand, it is born a function of   
and . Then . Then  

 
or more generally 

. 
Let’s apply the chain rule, in particular taking the derivative of  both 
sides with respect to : 

 

.  ( ) 
Then: ; .  
What’s  a function of ? 

S, V,
N U = U(S, V, N)

2U(S, V, N) = U(2S,2V,2N)

λU(S, V, N) = U(λS, λV, λN)

λ
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U(λS, λV, λN) = ( ∂U
∂S )

V,N
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∂V )
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S,V
N

= TS − PV + μN dU = TdS − PdV + μdN
F = U − TS = − PV + μN G = U − TS + PV = μN
G G = G(P, T, N) = μ(P, T )N


