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I. Last Time
II. A Briet Tour of Other Phase Iransitions
I11. Exploring the Van Der Waals Equation of State and Phase

'Transitions in Detail

[.  Yan told us about the graphite-diamond phase transition:
Shift ot focus towards phase diagrams’, which plot P vs. T.

We saw that the correct potential to focus on was the Gibbs free
energy: G = G(P,T,N) = u(P,T)N.

We’ve also been exploring the fact that the material 15 1n equilibrium

(or stable, or has max entropy) when the Gibbs free energy 1s

minimized.



II. A tew more phase transitions:
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Figure 5.14. Left: Phase diagram for a typical type-I superconductor. For lead,
Tc = 7.2 K and B; = 0.08 T. Right: Phase diagram for a ferromagnet, assuming
that the applied field and magnetization are always along a given axis.



II. A tew more phase transitions:
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Figure 5.13. Phase diagrams of “*He (left) and 3He (right). Neither diagram is
to scale, but qualitative relations between the diagrams are shown correctly. Not
shown are the three different solid phases (crystal structures) of each isotope, or
the superfluid phases of 3He below 3 mK.



II1. Let’s explore the van der Waals equation of state as a detailed

model of phase transition.

Why this one? 'T'his 1s one of the simplest non-trivial models.

Another reason 1s that 1t’s great for doing numerical simulations.

These things said, the van der Waals equation of state 1s
approximate. So, it’s predictions are not necessarily quantitatively

accurate.

The equation of state 1s:

2

py N bN) = NkT
P (V= bN) = NAT.

I'he modification of the volume comes from taking the volume of

the molecular constituents into account. What about the a term?



II1. The equation of state 1s:

py oV bN) = NkT
P | (V= bN) = NiT.

What about the a term? 'This 1s a modification of the pressure.

How does potential energy scale with density? 1'he potential energy
of the gas should scale linearly with the density, and we have N

particles, so

N N?
total PE. = —aN— = —a—.

vV Vv
T'’he Thermo identity states:

dU = TdS — PdV + udN,

or for a fixed amount of stutt (N), and a fixed entropy we have

oU
dU = — PdV ansz—(—) .
oV ON









II1. The equation of state 1s:

aN?
<P | )(V— bN) = NkT.
V2

What about the a term? 'This 1s a modification of the pressure.

N N?
total PE. = —aN— = —a—.

V |4

The Thermo 1dentity states:
dU = TdS — PdV + udN,

or for a fixed amount of stutt (N), and a fixed entropy we have

dU = —PdV and P = — <g—(é> .
SN
This gives Pgyie 1o PE. = — aN*/V*:
_ NkT  aN?
“ (V=bN) V2

P



II1. The equation of state 1s:
N2
(P -~ )(V— bN) = NKT.

V2

T'he key to understanding what happens with our substance 1s Yan’s
insight that we should look for the phase that has the lowest Gibbs

free energy.



II1. The equation of state 1s:

aN?
<P | )(V— bN) = NkT.
V2

The key to understanding what happens with our substance 1s Yan’s

insight that we should look for the phase that has the lowest Gibbs

free energy.

We have
dG = — SdT + VdP + udN,

Again we fix the amount of material (N) and the temparature:\
< 0G ) ( 7) > NKTV ~  2aN?
— =V — = — > + S
oV /)yt oV ) nr (V — Nb) V

lo integrate this with respect to volume 1t helps to write the first
term’s numerator V = (V — Nb) + Nb, this allows us to do all the

integrals. ..



III. We have
dG = — SdT + VdP + udN,

Again we fix the amount of material (V) and the temparature:\
( 0G ) ( 7) > NKTV ~ 2aN?
— =V|{— = — >t —
oV /)yt oV ) nr (V — Nb) v

lo integrate this with respect to volume 1t helps to write the first
term’s numerator V = (V — Nb) + Nb, this allows us to do all the

integrals. ..
(NKT)(Nb)  2aN?
V — Nb 1%

G = — NkT In(V — Nb) 4 + c(T')



