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I. Parametric Plot Exploration

II. Last Time
III. Computing Averages with the Partiton Function
IV. Paramagnetism From a Canonical Perspective

V. Rotation of Diatomic Molecules and the Equipartition T'heorem

I. Covered a derivation of the “canonical ensemble”, which tells us
the probabilities of states with energies E, and describes

equilibrium at constant temperature.

ES i eq o
Boltzmann factor: e™# (relative probability of state s)
Partition function: Z = 2 e ~PEs
S

e 1
Probabilities of states: P(s) = Ee_ﬁEs



I.  We can also compute averages in this framework:

X = % ; X e PEs, !
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III. We need to be convinced that we should bother with whole

additional formalism. Let’s return to paramagnetism

Let’s repeat all Andrew’s calculations: we begin with the partition

tunction
Z = e PHB) 4 o= PuB) — ohPB | o=HPB = ) cosh(upB).

The probability of finding a given spin in the up state 1s then
eHPB

P(1)= > cosh(ufB) T'hen the average energy 1s

E=(=uB)P(T)+uB)P(l)=pubB > coshGipB) puB tanh(ufB).




I.  We can also compute averages in this framework:

X = % ; X e PEs, !
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1. Z = e 1B 4 o= PUB) = ohPB 4 ¢=#PB = 2 cosh(upB).
The probability of finding a given spin in the up state 1s then

eHPB . .
P(1)= . Let’s also consider the average magnetic
2 cosh(ufB)
moment of the spin

2coshid) T T S coshupp) - M ARUPB).

From this we can immediately compute the magnetization of N spins
M = uN tanh(upB).

T'here’s one more technique that works particularly well for average

i, = (+1)

energies. ..



I.  We can also compute averages in this framework:
1 )
X — E ; XSe IBEs.

There’s one more technique that works particularly well for average

energies. ..
] i
E=— Z E.e~PE.

Let’s compute the f derivative of Z, Z = Z e PE::;
\)

0Z _

% = Z (—ES> (4 ﬂES.

We can easily fix this up
_ 1 0Z 0
F=—-———=—-——1In(2).

Zop 0P



I. We have

_ 1 0Z 0
EFE=—-———=—-——1In(2).
Z dp op
For the paramagnet we had
Z = e PB4 o= PUb) = PB4 o=#PB = 2 cosh(upBB)

'Then

ﬂ ﬂ

And so
E = — uBtanh(upB), U = — uBN tanh(ufB).

IV. Applying these tools to a diatomic gas. We’ll begin with cases like

carbon monoxide or HCI, which have distinct molecules at each end.




IV. Applying these tools to a diatomic gas. We’ll begin with cases like
carbon monoxide or HCI, which have distinct molecules at each end.
E(j) =j(j + 1)e, j=0,1,2,....

Energy
4
12€ 1 = e e s s s e § = 3
|
6e + — — — — — =
2¢ + — — — =]
01 — g = ()

These states are degenerate with degeneracy (2j + 1).

With these results in hand we can compute the partition function

Ztot — 2 e PEs — 2 (2] 4+ l)e—ﬂE(j) — 2 (2] + 1)e—ﬁj(j+1)e
) j=0 j=0



IV. With these results in hand we can compute the partition function

Ziot = Z e PEs — Z (2j + e PEU) = Z (2] + 1)e Ail+De
S Jj=0 j=0

To do this sum we’re going to have to convert 1t to an integral.

For carbon monoxide we have ¢ = 0.00024 eV. 1o convert to an

integral we introduce a dj and multiply by the summand to get...



IV. With these results in hand we can compute the partition function

Ztot — Z e PEs — 2 (2] 4+ l)e—ﬂE(j) — Z (2] + 1)e—ﬁj(j+1)e
) j=0 j=0
For carbon monoxide we have € = 0.00024 eV. 1o convert to an

integral we introduce a dj and multiply by the summand to get...

e . kT 1
Ziot | 2j+ De Pluthegi = — = —
JO € Gﬂ

With the partition, we can compute average energy:

_ 1 0Z 1 1
Eyot = “ 70 = = (Gﬁ)<—¥) = 7 = kT




