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Today

I. Covered a derivation of  the “canonical ensemble”, which tells us 
the probabilities of  states with energies  and describes 
equilibrium at constant temperature.  

Boltzmann factor:  (relative probability of  state ) 
Partition function:  

Probabilities of  states: 
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I. We can also compute averages in this framework: 

. 

III. We need to be convinced that we should bother with whole 
additional formalism. Let’s return to paramagnetism  

Let’s repeat all Andrew’s calculations:  we begin with the partition 
function 

. 
The probability of  finding a given spin in the up state is then 

. Then the average energy is 

.

X =
1
Z ∑

s

Xse−βEs

Z = e−β(−μB) + e−β(μB) = eμβB + e−μβB = 2 cosh(μβB)

P( ↑ ) =
eμβB

2 cosh(μβB)

E = (−μB)P( ↑ ) + (μB)P( ↓ ) = μB
−eμβB + e−μβB

2 cosh(μβB)
= − μB tanh(μβB)
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I. We can also compute averages in this framework: 

. 

III. . 
The probability of  finding a given spin in the up state is then 

. Let’s also consider the average magnetic 

moment of  the spin 

. 

From this we can immediately compute the magnetization of   spins 
. 

There’s one more technique that works particularly well for average 
energies…
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N
M = μN tanh(μβB)
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I. We can also compute averages in this framework: 

. 

There’s one more technique that works particularly well for average 
energies… 

. 

Let’s compute the  derivative of  , : 

. 

We can easily fix this up 

.
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I. We have 

. 

For the paramagnet we had 
 

Then 

, 

And so 
,  .  

IV. Applying these tools to a diatomic gas. We’ll begin with cases like 
carbon monoxide or HCl, which have distinct molecules at each end.  

E = −
1
Z
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Z = e−β(−μB) + e−β(μB) = eμβB + e−μβB = 2 cosh(μβB)

∂Z
∂β

= 2μB sinh(μβB)

E = − μB tanh(μβB) U = − μBN tanh(μβB)



IV. Applying these tools to a diatomic gas. We’ll begin with cases like 
carbon monoxide or HCl, which have distinct molecules at each end.  

. 

These states are degenerate with degeneracy .  
With these results in hand we can compute the partition function 

E( j) = j( j + 1)ϵ, j = 0,1,2,…
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IV. With these results in hand we can compute the partition function 

 

To do this sum we’re going to have to convert it to an integral.  

For carbon monoxide we have  eV. To convert to an 
integral we introduce a  and multiply by the summand to get…
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IV. With these results in hand we can compute the partition function 

 

For carbon monoxide we have  eV. To convert to an 
integral we introduce a  and multiply by the summand to get… 

. 

With the partition, we can compute average energy: 
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