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I. Last time we discussed a couple of  examples of  the canonical 
distribution. We found the partition functions for paramagnetism 
and for the rotational spectrum of  a diatomic molecule.  
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I. In the identical particle case there is the symmetry of  
interchanging the two molecules and the partition function is 
half  as much: 

  (identical atoms in the ).  

II. We’re in good stead to prove the equipartition result. I’ll do the 
proof  for a single degree of  freedom, but it’s not hard to generalize 
to  degrees of  freedom.  

, where  is constant.  
Let’s imagine that the allowed ’s are a discrete set, each separated 
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II. I’ll do the proof  for a single degree of  freedom, but it’s not hard 
to generalize to  degrees of  freedom.  

, where  is constant.  
Let’s imagine that the allowed ’s are a discrete set, each separated 
by a spacing .  Then, the partition function is  

 

This is a gaussian integral  

.  

The average contribution to the energy is then 

. 

Just as above, this holds in the limit where the states or closely spaced 
compared to  (i.e. ). 
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II. The Maxwell-Boltzmann speed distribution.  

If  you think about the gas in the room you are in, the various 
molecules have a huge variety of  speeds. At this point we shift to 
asking probabilistic questions, for example, what’s the probability of  
finding a molecule with a particular speed.  To do this properly we 
need intervals of  speeds and the notion of  a probability distribution, 
and probability densities.  

=the probability of  finding a molecule with speed between  
and 
𝒟(v)dv v

v + dv



II. =the probability of  finding a molecule with speed between 
 and . Let’s try to find :  this is a bit tricky because 

velocity is a vector,  
. 

We know how to compute the first factor, the relative probability of  a 
state is given by its Boltzmann factor: 

. 
To get the other factor we need to think about how many different 
velocities correspond to the same speed (and hence the same energy) 
The relative number of  these is given 
by the area of  the velocity space sphere  
with radius , namely . Then,  
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II. Then,  . We can normalized this 
distribution: 
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Carrying this out using the derivative of  a gaussian trick gives 
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