Today

- I. There is class on Monday; Last Time
- II. The Maxwell-Boltzmann Speed Distribution's Properties
- III. Zak's Guest Lecture: The Partition Function and the Helmholtz Free Energy
- IV. Partition Functions of Composite Systems
- I. We derived the Maxwell-Boltzmann speed distribution:

$$
\mathscr{D}(v) = \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 e^{-mv^2/2kT},
$$

we interpret this as a probability density for the speed of a gas molecule in equilibrium at temperature T.

Recall early on we calculated
$$
v_{rms} = \sqrt{\frac{3kT}{m}}
$$

II. We can find the most probable velocity by computing

$$
\frac{d}{dv}\mathcal{D}(v) = 0
$$
, which gives $v_{max} = \sqrt{\frac{2kT}{m}}$. We can also use this

distribution to find the mean velocity of the gas,

$$
\overline{v} = \int_0^\infty v \mathcal{D}(v) dv = \sqrt{\frac{8kT}{\pi m}}.
$$

Let's consider the the probability of finding a gas molecule moving faster than the speed of sound. We can compute this as

$$
Prob(v > 343 \text{ m/s}) = \int_{343 \text{ m/s}}^{\infty} \mathcal{D}(v)dv = \int_{343 \text{ m/s}}^{\infty} \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 e^{-mv^2/2kT} dv
$$

Substitute

$$
x = \frac{v}{v_{max}},
$$

Prob = $\frac{4}{\sqrt{\pi}} \int_{x_{min}}^{\infty} x^2 e^{-x^2} dx$

II. Let's consider the the probability of finding a gas molecule moving faster than the speed of sound. We can compute this as $Prob(v > 343 \text{ m/s}) =$ ∞ $\mathscr{D}(v)dv =$ ∞ $_{343}$ m/s \backslash *m* $\overline{2\pi kT}$ $\overline{}$ 3/2 4*πv*² *e*−*mv*2/2*kTdv*

Substitute

$$
x = \frac{v}{v_{max}},
$$

Prob = $\frac{4}{\sqrt{\pi}} \int_{x_{min}}^{\infty} x^2 e^{-x^2} dx$

For Nitrogen at room temperature

³⁴³ m/s

IV. Partition function of composite systems. Let's start with just two particles. The total of two interacting particles can be complicated. Instead let's take the two particles to be noninteracting. Then $E_{tot} = E_1 + E_2$, and for this case the partition function simplifies $Z_{total} = \sum e^{-\beta E_{tot}} = \sum e^{-\beta (E_1 + E_2)} = \sum e^{-\beta E_1} e^{-\beta E_2}.$ This is still hard to work with, but if we assume the two particles are distinguishable, then we can say that particle 1 is in the state s_1 and that particles is in the state s_2 . That is, $s = (s_1, s_2)$, and we have *s s s* $Z_{total} = \sum \sum$ s_1 s_2 $e^{-\beta E_1(s_1)}e^{-\beta E_2(s_2)} = \sum e^{-\beta E_1(s_1)}$ *s*1 $\sum e^{-\beta E_2(s_2)} = Z_1 Z_2$ *s*2

(noninteracting, distinguishable particles). What if I had *N* noninteracting distinguishable particles?

$$
Z_{total} = Z_1 Z_2 \cdots Z_N.
$$

For identical particles all I need to do is compensate for over counting,

$$
Z_{total} = \frac{1}{2} Z_1 Z_2 = \frac{1}{2} (Z_1)^2.
$$

For *N* identical particles the over counting is *N*!, so we have $Z_{total} = \frac{1}{N!} (Z_1)^{N}$ (noninteracting, indistinguishable particles). 1 $\overline{N!}$ (Z_1) *N*