
I. No class Wednesday or Friday; Last Time 
II. The Ideal Gas from a Canonical Perspective 
III. Spencer’s Guest Lecture: The Gibbs Factor and the Grand 

Canonical Partition Function

Today

I. Zak gave a guest lecture on the relationship between the 
partition function and the Helmholtz free energy. Gave a nice 
motivation that compared the Boltzmann counting of  
microstates and the design of  the of  partition function. The 
proof  was via showing that both  and  satisfied the 
same PDE. 

We also explored noninteracting, identical particles and their 

partition functions: .
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II. At a technical level noninteracting decomposed the total energy 
into a sum of  energies for each particle. We’ll use this same idea 
again, this time separating the translational and internal motions. 
Here internal refers to all forms of  energy for a single particle that 
aren't translational, e.g., rotational or vibrational modes within the 
molecule. This splits up the Boltzmann factor 

. 
Then we get a simpler partition function 

. 
Let’s repeat the calculation of  the contribution of  the translational 
modes, this time via partition function. To do that we need the 
quantum mechanics of  translational motions in a box. First let’s do 
the 1D case, then we’ll do 3D. 

e−βE(s) = e−βEtr(s)e−βEint(s)

Z1 = ZtrZint



II. The general wavelength of  a wavefunction in a 1D box is 

, where .  

According to de Broglie 
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Our free particle only has kinetic energy: 

, . 
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II. With the energy spectrum in hand, 

, , 

we can compute the partition function.  We find 

. 

Converting this to an integral approximation we have 

. 

Let’s guess how it goes for the 3D box: 

. 

Focusing, on  for a moment, we have , this is the de 

Broglie wavelength of  a thermal atom or molecule.
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II. Using this partition function we can find the chemical potential 
(amongst many other things): 

. 

See additional slides from Spencer’s guest lecture too!

μ = − kT ln ( V
N

Zint
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