
I. Last Time 
II. Distinguishable Particles, Bosons, and Fermions 
III. Identical Particle Distribution Functions

Today

I. Spencer gave a guest lecture on Gibbs factors and the grand 
partition function  

. 
The grand partition function is sum over these Gibbs factors 

. 

The setup for these is a system in contact with a constant 
temperature reservoir that can  
also exchange particles. 

e−(E(s)−μN(s))/kT

𝒵 = ∑
s

e−(E(s)−μN(s))/kT



II. Let’s return to our discussion of  identical particles and their 
indistinguishability. Previously we had argued that we could 
compensate for the over counting of  the distinguishable particle case 
by dividing by , and got 

. 

This doesn’t work for quantum particles. To show that we take a 
system of  five states and two particles, but with all the states having 0 
energy.  

 (distinguishable)   (Indistinguishable)
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25 = 12.5



II.  (distinguishable)   (Indistinguishable) 

How do we deal with this in general?  
The assumption we've made to get the counting  is that the 
particles are bosons, that is, they can occupy exactly the same state.  

On the other hand fermions are particles such path only one can 
occupy any state at a time.  

A remarkable theorem of  relativistic quantum mechanics is that the 
spin of  a particle tells you its statistics (i.e. whether it is a boson or a 
fermion). For example,  
Bosons: photons, gluons, Higgs boson … (spins=0,1,2) 
Fermions: electrons, neutrons, neutrinos, protons, (spins=1/2, 
3/2,5/2,…) 
These ideas lead us to distinguish boson and fermionic partition func

Z = 5 × 5 = 25 Z =
1
2

25 = 12.5

Z = 15



II. Why have we been getting away with what we’ve been doing for 
so long?  
It turns out that we’ve been focused on low density systems. That is,  

. 
More precisely, recalling 

, 

the condition can be stated as  

. 

Let’s drop this assumption. 

Z1 ≫ N

vQ = ℓ3
Q = ( h

2πmkT )
3

V
N

≫ vq



III. Let’s turn to distribution functions.  

The brilliant idea here is to treat a single energy level as our system 
and all the remaining energy levels as our reservoir.  

Suppose, in general, that there are  particles in our state of  energy  
and chemical potential . Then 

. 

Let’s study these probabilities for fermions. 

n ϵ
μ

P(n) =
1
𝒵

e−(nϵ−μn)/kT =
1
𝒵

e−n(ϵ−μ)/kT



III. Then 

. 

Let’s study these probabilities for fermions. Only one or zero 
fermions is allowed to occupy our single state and so we have  

. 
Then, the average number of  particles is  

. 

This is so widely used that it has its own name, the Fermi-Dirac,  

 

Let’s plot this and try to understand its shape as a function of  energy. 

P(n) =
1
𝒵

e−(nϵ−μn)/kT =
1
𝒵

e−n(ϵ−μ)/kT

𝒵 = 1 + e−(ϵ−μ)/kT

n = ∑
n

nP(n) =
e−(ϵ−μ)/kT

1 + e−(ϵ−μ)/kT
=

1
e(ϵ−μ)/kT + 1

nFD =
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e(ϵ−μ)/kT + 1
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