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I. Last Time
II. Wrap up Identical Particle Distribution Functions

III. Degenerate Fermi Gas

[. Spencer gave a guest lecture on Gibbs factors and the grand

partition function
o ~(E(S)—pN($))/kT

T'he grand partition function 1s sum over these Gibbs factors
Z = ) o E-NOMT
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T'he setup for these 1s a system 1n contact with a constant

temperature reservolr that can

also exchange particles.
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[.  We found the grand partition function for fermions
F =14+ e—(e—,u)/kT.
From this we found the “occupancy”, that 1s, the average number of

particles in the state under consideration. We found
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[. Let’s turn to the grand partition function for bosons
T = Z o~ Me—kT — | 4 o—(e—pIkT 4 ,—2e-w/KT .,

n
2
= 1 4 ¢ KT 4 (g=(epIkT)* 4 ...
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1 — e—(e—w)kT

Notice that this sum only converges 1f the term being raised to a
power has a magnitude less than 1. Here this amounts to the

requirement that € be greater than p!

Once again we compute occupancy via

7T = Z nP(n) = 0P(0) + 1P(1) + --- .

Let’s introduce the shorthand x = (e — u)/kT...
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1 — e—(e—w)/kT

II. We have: & =

Once again we compute occupancy via

=) nP(n)=0P0)+ 1P(1)+ -

Let’s introduce the shorthand x = (e — u)/kT...
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IT we had stuck with Boltzmann statistics we would have found
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On the homework you're showing that y = — kT In(Z,/N)



II. 'This 1s nicely summarized graphically.
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Figure 7.7. Comparison of the Fermi-Dirac, Bose-Einstein, and Boltzmann distri-
butions, all for the same value of u. When (e — p)/kT > 1, the three distributions
become equal.



III. Degenerate Fermi Gases

lo fix a context let's imagine the electrons 1n a metal as our

fermions.
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Vo = = (4.3 nm)’ (Room temperature gas of electrons)
\/ 2nmkT

Compare an electron per atom, which gives (0.1 nm)*3, which much

smaller.

This shows that we are well away tfrom the dilute limit and we should
think about the Fermi-Dirac statistics. In that case, why not think of
this as a zero temperature limit. We’ll genuinely justity this after the
fact.



III. Degenerate Fermi Gases

This shows that we are well away from the dilute limit and we should
think about the Fermi-Dirac statistics. In that case, why not think of
this as a zero temperature limit. We’ll genuinely justity this after the
fact. In the zero temperature limit the chemical potential becomes

the deciding factor as to whether a state is occupied or not and we

call 1t the “Fermi energy" of the system:

0 > €



I11. Fermi energy:

Let’s again fix our attention on a cubical box of side length L (we’re

think of 1t as a chunk of metal). Recall that free particles 1n such a

box have

2L h h
A, =—,andp, = — = el , but this time let’s take into account the

n A, 2L
3D nature of the box
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