
I. Last Time 
II. Wrap up Identical Particle Distribution Functions 
III. Degenerate Fermi Gas

Today

I. Spencer gave a guest lecture on Gibbs factors and the grand 
partition function  

. 
The grand partition function is sum over these Gibbs factors 

. 

The setup for these is a system in contact with a constant 
temperature reservoir that can  
also exchange particles. 

e−(E(s)−μN(s))/kT

𝒵 = ∑
s

e−(E(s)−μN(s))/kT



I. We found the grand partition function for fermions 
. 

From this we found the “occupancy”, that is, the average number of  
particles in the state under consideration. We found 

. 

𝒵 = 1 + e−(ϵ−μ)/kT

nFD =
1

e(ϵ−μ)/kT + 1

E



I. Let’s turn to the grand partition function for bosons 

. 

Notice that this sum only converges if  the term being raised to a 
power has a magnitude less than 1. Here this amounts to the 
requirement that  be greater than ! 

Once again we compute occupancy via 
 

Let’s introduce the shorthand …

𝒵 = ∑
n

e−n(ϵ−μ)/kT = 1 + e−(ϵ−μ)/kT + e−2(ϵ−μ)/kT + ⋯

= 1 + e−(ϵ−μ)/kT + (e−(ϵ−μ)/kT)2 + ⋯

=
1

1 − e−(ϵ−μ)/kT

ϵ μ

n = ∑
n

nP(n) = 0P(0) + 1P(1) + ⋯ .

x ≡ (ϵ − μ)/kT



II. We have:  

Once again we compute occupancy via 
 

Let’s introduce the shorthand … 

 

If  we had stuck with Boltzmann statistics we would have found 

, . 

On the homework you're showing that 

𝒵 =
1

1 − e−(ϵ−μ)/kT

n = ∑
n

nP(n) = 0P(0) + 1P(1) + ⋯ .

x ≡ (ϵ − μ)/kT

nBE = ∑
n

n
e−nx

𝒵
=

−1
𝒵 ∑

n

∂
∂x

e−nx = −
1
𝒵

∂𝒵
∂x

=
1

e(ϵ−μ)/kT − 1

P(s) =
1
Z1

e−ϵ/kT nBoltzmann = NP(s) =
N
Z1

e−ϵ/kT = eμ/kTe−ϵ/kT = e−(ϵ−μ)/kT

μ = − kT ln(Z1/N)



II. This is nicely summarized graphically. 



III. Degenerate Fermi Gases 

To fix a context let's imagine the electrons in a metal as our 
fermions.  

  (Room temperature gas of  electrons) 

Compare an electron per atom, which gives (0.1 nm)^3, which much 
smaller.  

This shows that we are well away from the dilute limit and we should 
think about the Fermi-Dirac statistics. In that case, why not think of  
this as a zero temperature limit. We’ll genuinely justify this after the 
fact. 

vQ = ( h

2πmkT )
3

= (4.3 nm)3



III. Degenerate Fermi Gases 

This shows that we are well away from the dilute limit and we should 
think about the Fermi-Dirac statistics. In that case, why not think of  
this as a zero temperature limit. We’ll genuinely justify this after the 
fact. In the zero temperature limit the chemical potential becomes 
the deciding factor as to whether a state is occupied or not and we 
call it the “Fermi energy" of  the system: 

.ϵF ≡ μ(T = 0)



III. Fermi energy: 
. 

Let’s again fix our attention on a cubical box of   side length  (we’re 
think of  it as a chunk of  metal). Recall that free particles in such a 
box have  

, and , but this time let’s take into account the 

3D nature of  the box 

, , . The corresponding energies 

.

ϵF ≡ μ(T = 0)
L

λn =
2L
n

pn =
h
λn

=
hn
2L

px =
hnx

2L
py =

hny

2L
pz =

hnz

2L

ϵ =
| ⃗p |2

2m
=

h2

8mL2
(n2

x + n2
y + n2

z )


