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I. Last time we derived the occupancy of  a Bose-Einstein gas 

. 

Fermi energy: . 
Let’s again fix our attention on a cubical box of   side length  (we’re 
think of  it as a chunk of  metal). Recall that free particles have 

, and , but this time let’s take into account the 

3D nature of  the box , , . The energies 

.
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II. We'd like to compute the total number of  allowed quantum states 
and to do that we have to count the lattice sites for positive integer 

 and a very convenient way to do that is to compute the 
volume of  the octant of  a sphere in -space. Then we have  

 , 

here . 

On the other hand, 
we can solve the above for 

 in terms of  , and  
plug in to energy to get 
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II. Now that we know how far to go we can compute the : U
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