Joshua Etukudo 10/21/2020

Heat Engines & Efficiency

Heat Engines & Efficiency What we Know:

- A heat engine is any device that absorbs heat and converts part of the energy into work
- The efficiency of a heat engine is defined by;

- cannot be greater than 1. *e*
- The smaller the T_c/T_h ratio is, the more efficient the engine can be.

 $e \leq 1 - (T_c/T_h)$

The Carnot Engine Derivation:

- Every engine has a working substance which absorbs heat and does work as well e.g. a gas.
- Want the gas to absorb some heat Q_h from a hot reservoir. Where here, the entropy reduces by \mathcal{Q}_h/T_h in the reservoir and increases by \mathcal{Q}_h/T_{gas} in the gas.
- Now, to avoid making any new entropy, we set $T_{gas}=T_h$ but we know heat doesn't flow between objects at the same temperature so we assume T_{gas} is slightly less than T_{h^\centerdot}
- Want to keep it at this temperature by letting the gas expand as it absorbs heat (Isothermal)
- All that is left is to consider how to get the gas from one T to another and back with no $\mathcal Q$ added or taken out when the gas is at intermediate T (Adiabatic)

The Cycle: The Carnot Engine

- A. Isothermal Expansion at $T < T_h$
- B. Adiabatic expansion from T_h *to* T_c
- C. Isothermal compression at *Tc*
- D. Adiabatic compression from T_c *to* T_h

Prove directly that a Carnot engine, using an ideal gas as the working substance has an e fficiency of $1 - (T_c/T_h)$.

Problem 4.5 The Carnot Engine

• For the isothermal processes;

$$
\Delta U = 0 \implies Q = W
$$

• For the adiabatic processes;

$$
\mathcal{Q}=0
$$

Isothermal Expansion

•
$$
W = -P\Delta V;
$$

\n- $$
W = -P\Delta
$$
\n- $$
PV = nRT/V
$$
\n- $$
P = nRT/V
$$
\n

\n- $$
W = -P\Delta V;
$$
\n- $$
PV = nRT;
$$
\n- $$
P = nRT/V;
$$
\n- $$
\Rightarrow W = nRT \int_{V_i}^{V_f} (1/V) \, dV
$$
\n- Hence,
\n- $$
W_h = nRT_h \ln(V_{h2}/V_h)
$$
\n

 $W_h = nRT_h \ln(V_{h2}/V_{h1})$

$$
\bullet \ \ P = nRT/V;
$$

I

Isothermal Compression

• $W_c = nRT_c \ln(V_{c1}/V_{c2})$

Bear in mind that Q_c is defined as a positive number so this integral should be from a lower volume to higher volume for Q to be • $W_c = n$
Bear in n
 Q_c is def
positive r
this integ
be from a
volume to
volume to
positive *c*

 \implies *the integral is from* V_{c2} *to* V_{c1}

III

Bringing 1 and 3 together;

We know;

\n- $$
W_c = nRT_c \ln(V_{c1}/V_{c2}) = Q_c
$$
\n- $$
W_h = nRT_h \ln(V_{h2}/V_{h1}) = Qh
$$
\n

 $W_h = nRT_h \ln(V_{h2}/V_{h1}) = Qh$

•
• • W_c
• W_h
 $e \equiv$
So, $e = 1 - (Q)$ *c* / *Q h*)

 $e = 1 - [nRT_c \ln(V_{c1}/V_{c2})/nRT_h \ln(V_{h2}/V_{h1})]$

III

Adiabatic Expansion

Using,

and substitute.

$$
\bullet \ TV^{\gamma-1} = Const.
$$

We can solve for,

So,

$$
\bullet \quad V_{c1}/V_{c2}
$$

\n- \n
$$
TV^{\gamma-1} = Const.
$$
\nWe can solve for,\n
\n- \n
$$
V_{c1}/V_{c2}
$$
\nand substitute.\n
\n- \n
$$
T_h V_{h2}^{\gamma-1} = T_c V_{c1}^{\gamma-1}
$$
\n
\n

Adiabatic Expansion

Hence,

$$
\mathbf{IV} \qquad T_c/T_H = V_{h2}^{\gamma - 1}/V_{c1}^{\gamma - 1}
$$

Adiabatic Compression

Here,

$$
\bullet \ \ T_c V_{c2}^{\gamma - 1} = T_h V_{h1}^{\gamma - 1}
$$

Now, we can set III and IV equal to each other and solve for V_{c1}/V_{c2} . • T_c/T_H
Now, we
equal to
solve for
• T_c/T_H =
After sor
that => V_{c1} IV_{c2}

Adiabatic Compression contd.

Which gives,

•
$$
T_c/T_H = V_{h1}^{\gamma-1}/V_{c2}^{\gamma-1}
$$

After some algebra, we find

•
$$
T_c/T_H = V_{h1}^{\gamma-1}/V_{c2}^{\gamma-1} = V_{h2}^{\gamma-1}/V_{c1}^{\gamma-1}
$$

IV

Adiabatic Compression contd.

And after some cancellation we find that; • V_{c1}/V_{c2} =
Substituting
• V_{h2}/V_{h1} *fo*
In our equat
• $e = 1 - [nRT_c]$
And after sor
we find that;
• $e = 1 - (7$

 $e = 1 - (T_c/T_h)$

Substituting

•
$$
V_{c1}/V_{c2} = V_{h2}/V_{h1}
$$

• *Vh* 2 $\langle V^{}_{h1} \rangle$ for V_{c1} $\sqrt{V_{c2}}$,

In our equation for e gives

• $e = 1 - [nRT_c \ln(V_{h2}/V_{h1})/nRT_h \ln(V_{h2}/V_{h1})]$

However, Schroeder points out that as long as we know no new entropy has been created then the strict equality

 Q_C/T

And this result holds for non-ideal gases and other working substances.

$$
T_C \ge Q_h/T_h
$$

The Carnot Engine