Heat Engines & Efficiency

Joshua Etukudo 10/21/2020

Heat Engines & Efficiency What we Know:

- A heat engine is any device that absorbs heat and converts part of the energy into work
- The efficiency of a heat engine is defined by;

- e cannot be greater than 1.
- The smaller the T_c/T_h ratio is, the more efficient the engine can be.

 $e \leqslant 1 - (T_c/T_h)$

The Carnot Engine Derivation:

- Every engine has a working substance which absorbs heat and does work as well e.g. a gas.
- Want the gas to absorb some heat Q_h from a hot reservoir. Where here, the entropy reduces by Q_h/T_h in the reservoir and increases by Q_h/T_{gas} in the gas.
- Now, to avoid making any new entropy, we set $T_{gas} = T_h$ but we know heat doesn't flow between objects at the same temperature so we assume T_{gas} is slightly less than T_h .
- Want to keep it at this temperature by letting the gas expand as it absorbs heat (Isothermal)
- All that is left is to consider how to get the gas from one T to another and back with no Q added or taken out when the gas is at intermediate T (Adiabatic)

The Carnot Engine The Cycle:

- A. Isothermal Expansion at $T < T_h$
- B. Adiabatic expansion from T_h to T_c
- C. Isothermal compression at T_c
- D. Adiabatic compression from T_c to T_h

The Carnot Engine Problem 4.5

Prove directly that a Carnot engine, using an ideal gas as the working substance has an efficiency of $1 - (T_c/T_h)$.

• For the isothermal processes;

$$\Delta U = 0 \implies Q = W$$

• For the adiabatic processes;

$$Q = 0$$

Isothermal Expansion

•
$$W = -P\Delta V;$$

•
$$PV = nRT;$$

•
$$P = nRT/V;$$

$$\implies W = nRT \int_{V_i}^{V_f} (1/V) \ dV$$

Hence,

• $W_h = nRT_h \ln(V_{h2}/V_{h1})$

III

Isothermal Compression

• $W_c = nRT_c \ln(V_{c1}/V_{c2})$

Bear in mind that Q_c is defined as a positive number so this integral should be from a lower volume to higher volume for Q to be positive

 \implies the integral is from V_{c2} to V_{c1}

III

Bringing 1 and 3 together;

•
$$W_c = nRT_c \ln(V_{c1}/V_{c2}) = Q_c$$

• $W_h = nRT_h \ln(V_{h2}/V_{h1}) = Qh$

We know;

• $e = 1 - (Q_c/Q_h)$

So,

 $e = 1 - [nRT_c \ln(V_{c1}/V_{c2})/nRT_h \ln(V_{h2}/V_{h1})]$

Adiabatic Expansion

Using,

•
$$TV^{\gamma-1} = Const$$
.

We can solve for,

•
$$V_{c1}/V_{c2}$$

and substitute.

So,

•
$$T_h V_{h2}^{\gamma - 1} = T_c V_{c1}^{\gamma - 1}$$

Adiabatic Expansion

Hence,

•
$$T_c/T_H = V_{h2}^{\gamma-1}/V_{c1}^{\gamma-1}$$

IV

Adiabatic Compression

Here,

•
$$T_c V_{c2}^{\gamma - 1} = T_h V_{h1}^{\gamma - 1}$$

Adiabatic Compression contd.

Which gives,

•
$$T_c/T_H = V_{h1}^{\gamma-1}/V_{c2}^{\gamma-1}$$

Now, we can set III and IV equal to each other and solve for V_{c1}/V_{c2} .

•
$$T_c/T_H = V_{h1}^{\gamma-1}/V_{c2}^{\gamma-1} = V_{h2}^{\gamma-1}/V_{c1}^{\gamma-1}$$

After some algebra, we find that =>

Adiabatic Compression contd.

•
$$V_{c1}/V_{c2} = V_{h2}/V_{h1}$$

Substituting

IV

• V_{h2}/V_{h1} for V_{c1}/V_{c2} ,

In our equation for *e* gives

• $e = 1 - [nRT_c \ln(V_{h2}/V_{h1})/nRT_h \ln(V_{h2}/V_{h1})]$

And after some cancellation we find that;

•
$$e = 1 - (T_c/T_h)$$

The Carnot Engine

However, Schroeder points out that as long as we know no new entropy has been created then the strict equality

 $Q_C/7$

And this result holds for non-ideal gases and other working substances.

$$\Gamma_C \geqslant Q_h / T_h$$