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OUTLINE 

I.  What is an Einstein Solid 

II.  How do we count? 

III.  Counting Multiplicities of Einstein Solid 

IV.  General Formula 

V.  Entropy?? 



WHAT IS AN EINSTEIN SOLID? 

Simple model for the microscopic 

interactions between the atoms of a 

solid. 

Imagine that these interactions can be 

described as if they were quantum 

harmonic oscillators. 

We know that for objects in a stable 

equilibrium, the harmonic oscillator is 

a good approximation for small 

disturbances  



HOW DO WE COUNT 

This is a bit of an aside but we need to 

understand these tools for counting 

before we can use them for the 

Einstein solid.  

Lets suppose Matt has q grapes, and N 

students he could give them to.  

For this first scenario, lets assume, he 

won’t give any student more then one 

grape.  

What we want to know is how many 

different possible people could he 

give grapes to? 



HOW DO WE COUNT 

Lets think, for the first grape Matt has N 

possible students he could give a grape.  

For the second grape, he has N-1, because 

he won’t give any student the more then 1 

grape.  

This gives us N*(N-1) possible options, 

however, we don’t care which order Matt 

gives the students the grapes, so we have 

over counted each options once. 

This gives N*(N-1)/2.  

We can do this again for the third grape, Matt 

has N-2 options, but we don’t care what order 

so we over counted by a factor of 3 this time. 

Giving N*(N-1)*(N-2)/(3*2). 

 

 



HOW DO WE COUNT 

Okay, so how long can we keep doing 

this? Well, until Matt runs out of 

grapes.  

Lets suppose that he only has 5 

grapes. Then we could do this process 

2 more times.  

Giving: N*(N-1)*(N-2)*(N-3)*(N-4)/

(5*4*3*2) 

Great! Now we know how many 

possibilities if Matt has only 5 grapes, 

but what if he has q grapes? 

 

 



HOW DO WE COUNT 

Great! Now we know how many if Matt has only 5 
grapes, but what if he has q grapes? 

Lets rewrite the numerator in terms of factorials. We 
can see that it should be related to N! . 

However, we stop multiplying when Matt runs out of 
grapes.  We can account for this by dividing by (N-q)! 

In essence, our numerator is equivalent to  

​𝑁!/(𝑁−𝑞)!  

Now, we know we have double counted because we 
don’t really care which order he gives the grapes to his 
students.  

To account for this we divided by the number of ways 5 
students could have been arranged, or 5! And if Matt 
had q grapes we would divide by q! 

 

 

 

 

Giving: N*(N-1)*(N-2)*(N-3)*(N-4)/(5*4*3*2) 



HOW DO WE COUNT 

Phew, that’s a lot of counting. Lets put it all 

together. 

All in all we have: 

​𝑁!/(𝑁−𝑞)!𝑞! =(█𝑁@𝑞 ) 

We call this the choose function, and it tells 

us how many combinations there are when 

we choose q of N objects. 

 

 



FROM GRAPES TO ENERGY 

Now let’s consider the scenario in which Matt 
can give more then one grape to his N 
students, and also that (slightly 
unrealistically) he can’t tell the difference 
between any of his students  

So more concretely, lets say Matt has 3 
grapes, and 3 students, Guillermo, Nathalie 
and Zak. Matt only knows he has 3 grapes 
and 3 students but wants to know how many 
different ways he could have given them. 

So for example, he could have given Zak 3 
grapes (and 0 to Nathalie and Guillermo), 1 
to each, or 2 to Nathalie and 1 to Guillermo. 

He doesn’t know the difference between the 
situations, but wants to know how many ways 
there are. 



FROM GRAPES TO ENERGY 

Okay, so this scenario is very similar to that of 
our Einstein solid.  

We know our goal in this course is to connect 
the micro and macroscopic worlds, so lets first 
remind ourselves of the microscopic world of 
the Einstein Solid.  

The way we are imagining the Einstein Solid is 
as a collection of quantum oscillators. 

Because these are quantum oscillators, they can 
only take quantized amounts of energy. In other 
words, I can’t put any energy, I have to move in 
particularly sized steps. 

Luckily, for the quantum oscillator, all the steps 
have the same size, hf, where h is Planck's 
constant and f is the natural frequency of the 
oscillator.  



COUNTING MULTIPLICITES 

Okay, so now lets see how this is related to Matt 
and his grapes.  

Lets suppose we have N oscillators. This means, 
that we have N/3 atoms, because each atom can 
oscillate in 3 dimensions.  

Our discrete energy levels, mean that instead of 
a continuous variable, energy can be counted. 
We can ask the question of how many hfs are 
there rather then how much energy.  

So if we were to describe the whole microstate 
entirely, we would need to tell you how many 
hf’s there are in each oscillator, and specify 
which ones.  



COUNTING MULITPLICTIES 

Okay, so now we have N oscillators, each with 

some energy, an integer multiple of hf. 

Suppose we look at the macroscopic variable, 

total energy, U=qhf, where q is some integer. 

Just like Matt only knew the total number of 

grapes, here we only know the total amount of 

energy. 

Technically, the ground state of the quantum harmonic oscillator still has an 
energy of (1/2)hf, but it increases by hf each time giving excited states of 
(3/2)hf, (5/2)hf… By comparing everything to the ground state, we can take 
this to be integer multiples of hf.  



COUNTING MULITPLICTIES 

Then, we could ask how many possible 

microstate configurations (how many 

combinations of students) are there given 

some number of oscillators, N, and some 

energy defined by q. We call this the 

multiplicity. 

This means we would like to define a function 

Ω(N,q) that tells us the multiplicity at a given 

N and q. 

Technically, the ground state of the quantum harmonic oscillator still has an 
energy of (1/2)hf, but it increases by hf each time giving excited states of 
(3/2)hf, (5/2)hf… By comparing everything to the ground state, we can take 
this to be integer multiples of hf.  



COUNTING MULTIPLICITIES 
To understand more specifically how multiplicity 
works, lets take a simple case where N=3 and see how 
the multiplicity changes with q.  

If q is 0? 

Then all 3 oscillators are in the ground state. There is 
only 1 way to do this. 

If q is 1? 

Then there are 3 ways to achieve this energy. 

If q is 2?  

6 

If q is 3? 

10 

We should expect some kind of choose function, 
because we are looking for combinations. But its clear 
we aren’t quite in the first scenario. 

So, lets look at the general formula and see if we can 
make some sense of it. 

 



COUNTING MULTIPLICITIES 

The formula for the number of multiplicities is 

shown on the left.  

Lets set the problem up in the following way, 

to understand this formula. 

On the left, the lines separate our harmonic 

oscillators. This means we will have N-1 lines 

The dots represent the energy units each 

oscillator has. This means we will have q dots. 



COUNTING MULTIPLICITIES 

So, if we have a total of q+N-1 symbols. 

If wherever we place the dots and lines, we 

are representing some microstate. 

 The number of microstates that correspond to 

energy q are thus all possible ways to take 

q+N-1 symbols and choose q of them to be 

dots.  



A FEW TEST CASES 

Recall from earlier, (█𝑁@𝑞 )= ​𝑁!/(𝑁−𝑞)!𝑞! . 

Lets find the multiplicity for N=3,q=3. We did 

this case explicitly by writing out the all the 

possibilities, but do we get the same answer 

here? 

Now lets try for the case draw with lines and 

dots? What is N? What is q? and what is the 

multiplicity for this macrostate? 

(█𝑁@𝑞 )= ​𝑁!/(𝑁−𝑞)!𝑞!  



ENTROPY? 

Okay, so now that we have calculated some of these 
multiplicities lets talk about why. 

You may have noticed that some of our microstates were 
more common then others.  

Take the N=3, q=3 case. There were a lot more states with 
2 energies in one oscillator and 1 in another then any 
other microstate. The smallest one had only 1 (1,1,1) and 
whereas 2,1 had 6 possibilities.  

When we increase N and q, the disparity between the 
smallest set of microstates and the largest increases 
dramatically.   

This means that some microstates are simply more likely, 
and at high N and q, overwhelmingly so. 

This is how we think about the idea that entropy always 
increase. It doesn’t always, its just overwhelmingly likely 

to increase.  

(█𝑁@𝑞 )= ​𝑁!/(𝑁−𝑞)!𝑞!  



YAYY 

We now understand Einstein’s model of a solid in which each 
atom’s motion is described by 3 quantum oscillators. 

We saw the choose function and how to use it.  

We calculated the multiplicity of a given solid if we know the 
number of atoms, and its energy, with the formula 

 

 

 

 

We thus understand the connection between the microstates, 
the energy of each particular oscillator and the macrostate 
total energy. 

And even connected this loosely to Entropy. 

 


