Helmholtz and Gibbs Free Energy

Nathalie Jones 10/30/20

But first, review

- Clausius' definition of entropy:

 $\Delta S = Q/T$

- Heat is different from work
- First Law of Thermodynamics:

 $\Delta \mathbf{U} = \mathbf{Q} - \mathbf{P} \Delta \mathbf{V}$

Can rewrite in terms of entropy $\Rightarrow \Delta U = T\Delta S - P\Delta V$

Remember this guy? \rightarrow Enthalpy

- What is enthalpy again? Defined as:

 $\mathbf{H} = \mathbf{U} + \mathbf{P}\mathbf{V}$

- Ok, but what does that mean?
 - Enthalpy is the total energy required to create a system out of nothing and make space for it in the environment
 - OR if you're annihilating a system, enthalpy is the energy you get out, plus the work done by the atmosphere collapsing back in

Using Enthalpy

More useful to do a process and see how things change! \rightarrow find ΔH

$H = U + PV \quad \Rightarrow \quad \Delta H = \Delta U + V \Delta P + P \Delta V$

But for a constant pressure process this is: $\Delta H = \Delta U + P \Delta V$

Our new ΔU is: $\Delta U = T\Delta S - P\Delta V$

Plugging this into $\Delta H \rightarrow \Delta H = T\Delta S - P\Delta V + P\Delta V$

Which gives, $\Delta H = T\Delta S \rightarrow$ this is equal to the heat

If you can measure ΔH , you can learn about the change in entropy or about the heat created by your process

Something New! → Helmholtz free energy

- This is defined as:

 $\mathbf{F} = \mathbf{U} - \mathbf{TS}$

- What does this mean?
 - F is the energy needed to create a system MINUS the energy that the environment gives through temperature → like a reservoir
 - OR, if you're annihilating your system, F is the work you get out of destruction plus you have to dump the entropy of that system into the environment

Zero Entropy??

- In the equation F = U TS, Schroeder says that this S is the final entropy of the created system
- This comes from heat $\rightarrow \Delta S$
- If $S_{initial} = 0$, $\Delta S = S$
- But why would S_{initial} = 0 ? → Remember Julia's grapes!
- There is only way to have zero energy → zero,
 because the wizard hasn't created it yet

Chchchanges in Helmholtz Free Energy

 $\mathbf{F} = \mathbf{U} - \mathbf{TS} \quad \Rightarrow \quad \Delta \mathbf{F} = \Delta \mathbf{U} - \mathbf{T} \Delta \mathbf{S} - \mathbf{S} \Delta \mathbf{T}$

However, we're probably working at a constant T environment (like a lab): $\Delta F = \Delta U - T\Delta S$

Now, plug in our ΔU (= T ΔS – P ΔV): ΔF = T ΔS – P ΔV – T ΔS

This gives: $\Delta F = -P\Delta V \rightarrow$ This is the work!! (W)

If we can measure ΔF , we can learn about the work

Warning, I was confused

 $\mathbf{F} = \mathbf{U} - \mathbf{TS} \quad \Rightarrow \Delta \mathbf{F} = \Delta \mathbf{U} - \mathbf{T} \Delta \mathbf{S} - \mathbf{S} \Delta \mathbf{T}$

However, we're probably working at a constant T environment (like a lab): $\Delta F = \Delta U - T\Delta S$

If the process creates new entropy IN ADDITION to the heat included in ΔU ,

```
Now, plug in our \Delta U (= T\Delta S - P\Delta V):

\Delta F = T\Delta S - P\Delta V - T\Delta S \rightarrow This T\Delta S doesn't Giving the

fully cancel and inequality:

This gives: \Delta F = - P\Delta V \rightarrow However this is in the second regime by true if the second regime by the second regree by the second regime by the second regree by the s
```

Ok, so we've been lying to you

- We've been using this definition of the first law: $\Delta U = Q P \Delta V$
- However, this is only true for purely compression work
- Remember that the first law of thermodynamics also includes other forms of work: $\Delta U = Q - P\Delta V + W_{other} = T\Delta S - P\Delta V + W_{other}$

Ex. Electrical work

Another one! Gibbs Free Energy

- The Gibbs Free Energy is defined as:

 $\mathbf{G} = \mathbf{U} - \mathbf{TS} + \mathbf{PV}$

- Combo of F and H \rightarrow includes the corrections from F and H

Let's do a process \rightarrow Changes in G

 $\mathbf{G} = \mathbf{U} - \mathbf{T}\mathbf{S} + \mathbf{P}\mathbf{V} \quad \Rightarrow \Delta \mathbf{G} = \Delta \mathbf{U} - \mathbf{T}\Delta \mathbf{S} - \mathbf{S}\Delta \mathbf{T} + \mathbf{P}\Delta \mathbf{V} + \mathbf{V}\Delta \mathbf{P}$

At constant T and P, can get rid of some terms:

 $\Delta \mathbf{G} = \Delta \mathbf{U} - \mathbf{T} \Delta \mathbf{S} + \mathbf{P} \Delta \mathbf{V}$

Plug in the REAL first law: $\Delta U = Q - P\Delta V + W_{other}$ $\Rightarrow \Delta G = T\Delta S - P\Delta V + W_{other} - T\Delta S + P\Delta V$

Notice that things cancel and....

 $\Delta G = W_{other}$

If you can measure ΔG you can learn about the non-compression work in your process

Tricky Inequalities...

 $\mathbf{G} = \mathbf{U} - \mathbf{T}\mathbf{S} + \mathbf{P}\mathbf{V} \quad \Rightarrow \Delta \mathbf{G} = \Delta \mathbf{U} - \mathbf{T}\Delta \mathbf{S} - \mathbf{S}\Delta \mathbf{T} + \mathbf{P}\Delta \mathbf{V} + \mathbf{V}\Delta \mathbf{P}$

At constant T and P, can get rid of some terms:

```
\Delta \mathbf{G} = \Delta \mathbf{U} - \mathbf{T} \Delta \mathbf{S} + \mathbf{P} \Delta \mathbf{V}
```

Plug in the REAL first law....

```
\Rightarrow \Delta \mathbf{G} = \mathbf{T} \Delta \mathbf{S} - \mathbf{P} \Delta \mathbf{V} + \mathbf{W}_{\text{other}} - \mathbf{T} \Delta \mathbf{S} + \mathbf{W}_{\text{other}} - \mathbf
```

PAV Notice that things cancel:

 $\Delta G = W_{other}$

Again, if your process creates entropy this is not completely true....

What did we learn?

Helmholtz Free Energy: **F** = **U** – **TS** OR

Happy

Halloween!

 $\Delta F = \Delta U - T \Delta S$ & $\Delta F \leq W = -P \Delta V$ (at constant T)

If you can measure ΔF , you can learn about work

Gibbs Free Energy: **G** = **U** – **TS** + **PV** OR

 $\Delta G = \Delta U - T\Delta S + P\Delta V \quad \& \quad \Delta G \leq W_{other} \text{ (at constant T and P)}$ If you can measure ΔG , you can learn about the non-compression work in your process