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How Did We Get Our Partition Function Before?

● Started with isolated system with energy reservoir (microcanonical)
● Used Fundamental Postulate of Stat Mech to say all microstates of energy that fall 

between E and ΔE are equally probable to occur (microcanonical)
● We now set up a system that exchanges energy and has a temperature reservoir 
● If energy is exchanged so is entropy so we have non uniform probability distribution

𝑃(s)∝Ω(s)  and   S=kln(Ω)  so   ln(Ω)=S/k        Ω=eS/k
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What Happens When We Exchange Particles?

We now have: fundamental thermo identity      dSR=       (dUR+PdVR-μdNR)

Same Principle as with other Partition Function: PdV<<dU, but this time dN≠0

ΔSR= -        [E(s2)-E(s1)-μN(s2)+μN(s1)]

 

  =

Gibbs Factor =  e-[E(s)-μN(s)]/kT
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Same Derivation as Partition except we take N(s) into 
account due to exchange of particles

We use the same logic as before: a ratio of probabilities is 
equal to a ratio of exponentials 

In this way we generalize:
Gibbs Factor is analogous to the Boltzmann Factor
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What is the Probability it’s in Given Any State?

Gibbs Factor =  e-[E(s)-μN(s)]/kT

𝑃(s)= e-[E(s)-μN(s)]/kT
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We have our Gibbs factor which we just derived

The argument is that the probability of any given state divided by 
the Gibbs factor of any state is equal regardless of state. This 
means that the argument is not dependent on the state and is 
equal to a proportionality factor which we write as (1/Ƶ).

Rearranging we get the general probability with our constant of 
proportionality (1/Ƶ)
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Grand Partition Function (Ƶ)

𝑃(s)= e-[E(s)-μN(s)]/kT

Σ𝑃(s)=Σ       e-[E(s)-μN(s)]/kT=1

Ƶ= Σ e-[E(s)-μN(s)]/kT
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We have our previously derived probability for all states

Sum of all probabilities is equal to 1. Z doesn’t depend on E or 
N so we can rearrange:

Our Grand Partition Function!
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Can This System Scale Based On Different Particles?

What if our system has different types of molecules?

μdN term becomes a sum over species μidNi

We can modify all of our Gibbs Factors accordingly

Ex (2 different types a and b): 

Gibbs Factor 2 particles= e-[E(s)-μaNa(s)-μbNb(s)]/kT
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Biology Application

1. Hemoglobin molecule has 4 absorption sites
2. Each site can carry only one oxygen molecule (O2)
3. Let’s just look at 1 of the sites and treat as independent of others
4. If only one oxygen can bind, we have two states: occupied (ϵ= -0.7eV 𝜇=𝜇) and 

unoccupied (ϵ=0 eV 𝜇=0)

Grand Partition function for single site system:

Ƶ=e0/kT+e-[ϵ-𝜇]/kT=1+e-[ϵ-𝜇]/kT

850 × 648

https://www.researchgate.net/figure/Structure-of-a-hemoglobin-molecule_fig1_324683128


Application Cont.

1. Chemical potential 𝜇 in lungs relatively high (lots of oxygen)
2. Near lungs blood in diffusive equilibrium with atmosphere, partial pressure of oxygen 

is 0.2 atm
3. Using equation 6.93 from Schroeder which is related to our derivation of 𝜇 for an 

ideal gas, (pg. 255): 𝜇=-kTln[(VZint)/(NVQ))]≈ -0.6 eV  @Body Temp=310K

e-[ϵ-𝜇]/kT≈ e(0.1eV)/kT≈ 40,   So using our probability function: 𝑃(s)=

The probability of any given state being occupied is therefore:

𝑃(occupied by O2)=              =98%    (our lungs are really efficient!!)

e-[E(s)-μN(s)]/kT

Ƶ

40

1+40



Different Particles?

1. Say we allow for Carbon Monoxide (CO) to be able to bind to the site
2. Now there are three states available, unoccupied, occupied oxygen (ϵ= -0.7eV 

𝜇=-0.6eV), and occupied carbon monoxide (ϵ’= -0.85eV 𝜇’=-0.72eV)

Ƶ=e0/kT+e-[ϵ-𝜇]/kT+e-[ϵ’-𝜇’]/kT, where  e-[ϵ’-𝜇’]/kT≈ 120

𝑃(occupied by O2)=                   =25%

Probability of the site being occupied by an oxygen molecule drops! This is why carbon 
monoxide poisoning is deadly!!
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Summary and A Look Ahead

1. Grand Partition Function is just the partition function with an exchange of particles

2. Gibbs Factor =  e-[E(s)-μN(s)]/kT
  

3. 𝑃(s)= e-[E(s)-μN(s)]/kT      (Probability)

4. Ƶ= Σ e-[E(s)-μN(s)]/kT    (Grand Partition)
5. Gibbs Factor For Multiple Particles= e-[E(s)-μaNa(s)-μbNb(s)]/kT

In the same way that the Helmholtz Free Energy could be calculated: F=-kTln(Z)
The Grand Free Energy could be calculated: ɸ=-kTln(Ƶ), where Ƶ is the grand partition 
function!
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