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I. What is QM? Syllabus
II. Could QM by different?
III. TransformationsI. What is Quantum Mechanics?

See the syllabus for the start of an answer to this question.

II. Could Quantum Mechanics Be Different?

What would happen if quantum mechanics were not as it is? We’ll
spend some time with this question during this first week. Let’s
overview some of the unusual features of the quantum operating
system; we’ll meet them again and again.

• The outcome of a measurement of a quantum system is often, but
not always, one of a discrete set of possibilities. (It’s like digital
computing.)

• If you setup and run an experiment multiple times, then, despite
having taken every care to set it up in exactly the same way, you
will often get different results. In sharp contrast to the saying that
defines insanity, it is now quite reasonable to do exactly the same
thing and to expect different results.

• Quantum theory tells you how to compute the probabilities of
these measurement outcomes. It has nothing to say about the exact
outcome you’ll get during an individual trial run.

Ex. Since Quantum Mechanics is often digital, let’s look at a simplest
quantum digital system, one with just two states; it’s called a qubit.

Figure 1: A Mach-Zehnder Interferome-
ter.

There are many different ways to realize a qubit. One nice one is
an optical interferometer—here with just a single photon in it.

The outcome of the experiment at detector D0 is either a click—a
photon was measured—or, no click and no photon was measured.
Just two possible outcomes. These outcomes can occur with different
probabilities, p and 1− p.

We often say that probabilities can’t be negative—this is very
sensible, what would it mean for there to be a −20% chance of snow?
Let’s restrict consideration to real number for the moment. Certainly
the probability of all possible outcomes should satisfy

p1 + · · ·+ pN = ∑
i

pi = 1.

In other words, of all possible outcomes, certainly one must happen.

http://faculty.bard.edu/~hhaggard/teaching/phys321Sp20/syllabus/Phys321Sp20Syllabus.pdf
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But, this uses the 1-norm, essentially the sum of absolute values.
(Absolute values since the probabilities are necessarily positive.)
What if we also allowed the 2-norm, that is, a norm like that used in
the pythagorean theorem?

Figure 2: The plane of values of α and β.
The set |α|2 + |β|2 = 1 is the unit circle
in this plane for real α and β.

We can do this if we interpret the squared value |α|2 as a probabil-
ity. Take (α, β) as variables, now we want

|α|2 + |β|2 = 1.

In the first few lectures we will explore the relative strengths of the
1-norm and 2-norm formalisms. For example, we can ask “Why not
just forget about α and β and only consider |α|2 and |β|2?"

III. Transformations

Any answers to this question? This would amount to returning to
the 1-norm formalism. The difference between the two formalisms is
striking when you consider transformations!

Although many of you have taken linear algebra it is likely that
you haven’t used it in the way that physicists do most often. For this
reason, I pause the discussion of quantum mechanics completely for
a bit and want to just discuss transformations using matrices. The
Euclidean geometry mentioned above is perfect for these purposes,
and in many respects can be thought of as a classical analog of what
we are going to do in the quantum theory.

Put coordinates (x, y) on the standard Euclidean plane. We can
describe the points of this plane using several different common
notations. For example you might write~r = xx̂ + yŷ, or you might
use the graphical notation, or you might write |r〉. We will soon start
switching between some of these various notations, but for now, let’s
display the coordinates of the point as a 2× 1 array

~r =

(
x
y

)
= x

(
1
0

)
+ y

(
0
1

)
.

This means exactly the same thing as~r = xx̂ + yŷ, but will be much
more convenient for computations. For example, we can now per-
form rotations on vectors using the rules of matrix multiplication. To
figure out which matrix represents rotation by angle θ, we first ask
what rotating x̂ and ŷ gives by looking at the geometry (see figure
below)

Rx̂ = R

(
1
0

)
=

(
cos θ

sin θ

)
and

Rŷ = R

(
0
1

)
=

(
− sin θ

cos θ

)
.
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Figure 3: Geometry of rotations for x̂
and ŷ.

On the other hand, any matrix R can be written as

R =

(
R11 R12

R21 R22

)
,

and so direct matrix multiplication gives

Rx̂ = R

(
1
0

)
=

(
R11

R21

)
and Rŷ = R

(
0
1

)
=

(
R12

R22

)
.

Setting the two expressions for Rx̂ equal and those for Rŷ equal gives

R =

(
cos θ − sin θ

sin θ cos θ

)
.

This is the matrix that rotates any vector by an angle θ in the counter-
clockwise direction. Having found this rotation matrix, we can now
rotate~r to get the new vector~r′,

~r′ = R~r =

(
cos θ − sin θ

sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ

x sin θ + y cos θ

)
.

This all works very well, but it took a bit of work to find R. Is
there a more efficient way to do it? It turns out that there is and
the key is to ask what property of the vector~r is invariant under
rotations. A little thought and some sketches will convince you that
the length of a vector is invariant under rotations.

We can check this directly by computing the length of the vector~r′

r′2 =~r′ ·~r′ = ~̃r′~r′

= (x cos θ − y sin θ, x sin θ + y cos θ)

(
x cos θ − y sin θ

x sin θ + y cos θ

)
= (x cos θ − y sin θ)2 + (x sin θ + y cos θ) = x2 + y2 = r2!

This leads us to our first definition of orthogonal transformations:
they are those transformations that preserve the 2-norm. We have just
shown that rotations are one type of orthogonal transformation.
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There is a second, and efficient, way of doing this computation
and of viewing orthogonal transformations. We can write the calcula-
tion in a more abstract way

~r′ ·~r′ = (̃R~r)(R~r) = ~̃rR̃R~r

and so, if the right hand side is going to be equal to~r ·~r it must be that

R̃R = I, (1)

where

I ≡
(

1 0
0 1

)
is the identity matrix. Equation (1) gives us our second definition of
orthogonal transformations, namely those whose matrix representa-
tions satisfy Eq. (1). Notice that this equation can also be written as

R̃ = R−1. (2)

With this detour into transformation theory complete, we can
return to the question of what would be different in physics if we
worked with a 1-norm.
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