
day 12 1

Quantum Mechanics
Day 12

Today

I. Last Time
II. Stationary States
III. Building General States
IV. General Time Evolution from Energy
Eigenstates

I. Last Time

• We illustrated separation of variables on the Schrödinger PDE.

• We arrived at
Ĥψ = Eψ,

which can also be written

− h̄2

2m
d2ψ

dx2 + Vψ = Eψ,

and at
ϕ = e−iEt/h̄.

The full wave function is

Ψ(x, t) = ψ(x)ϕ(t).

• Julia derived

En =
n2π2h̄2

2ma2 , n = 1, 2, 3, . . . ,

and

ψn(x) =

√
2
a

sin
(nπ

a
x
)

.

Figure 1: The potential V(x) for the
infinite square well.

Figure 2: The first three energy eigen-
states of the infinite square well.

II. Stationary States

These separable states are just special solutions of the Schrödinger
equation. Who cares about them?! There are at least three reasons to
care—we covered one last time, they are states of definite energy, and
we’ll cover two more now:

1. They are stationary states. The wave function

Ψ(x, t) = ψ(x)e−iEt/h̄

is time dependent, but the probability density

|Ψ(x, t)|2 = Ψ∗Ψ = ψ∗e+iEt/h̄ψe−iEt/h̄ = |ψ(x)|2

is time independent. You can check that this leads to all expecta-
tion values being time independent.
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III. Building General States

Don’t forget that the physical state is

Psi(x, t) = ψ(x)ϕ(t).

So, we put our findings together to find

Ψn(x, t) =

√
2
a

sin
(nπ

a
x
)

e−
n2π2 h̄
2ma2 t

and a general state (that is, a general solution of the Schrödinger
equation) is

Ψ(x, t) =
∞

∑
n=1

cn

√
2
a

sin
(nπ

a
x
)

e−
n2π2 h̄
2ma2 t.

Let’s return to our question: why care about stationary states?
Reason 3: Linear combinations of stationary states give a general
solution of Schrödinger’s PDE when V = V(x), that is, when the
potential is time independent.

Strategy: Tell me V(x) and Ψ(x, 0), then using the completeness of
the eigenfunctions we can expand

Ψ(x, 0) =
∞

∑
n=1

cnψn(x)

and then indeed

Ψ(x, t) =
∞

∑
n=1

cnψne−iEnt/h̄

is a solution of Schrödinger’s equation! Don’t believe this claim,
check it!! In words what it says is that once you know the initial wave
function in a basis of eigenfunctions, you can time evolve each of the
basis elements independently, add up the resulting time evolutions
with the same weights as you did to get the initial wave function, and
you will obtain the time evolution of the initial wave function.

This is an incredible strategy. Let’s tackle an example.

IV. General Time Evolution from Energy Eigenstates

Suppose Ψ(x, 0) = Ax, for 0 ≤ x ≤ a. This state is depicted at right.

Figure 3: A particular initial wave
funciton Ψ(x, 0) = Ax.

We begin by normalizing this state:∫ a

0
A2x2 dx = 1 =⇒ A2 a3

3
= 1 =⇒ A =

√
3
a3 .

Next, we use Fourier’s trick to find the cn:

cn =

√
3
a3

∫ a

0

√
2
a

sin
(nπ

a
x
)

x dx,
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which gives

cn =

√
6

a2
−a2 cos

( nπ
a x
)

nπ

∣∣∣∣∣
a

0

= −
√

6 cos(nπ)

nπ
=

(−1)n+1
√

6
nπ

.

So,

Ψ(x, t) =

√
2
a

√
6

π

∞

∑
n=1

(−1)n+1

n
sin
(nπ

a
x
)

e−i n2π2 h̄2

2ma2 t.

We can use plotting an animation tools in Python to illustrate how
rich this evolution is. In practice we have to truncate the sum over n.
Experimenting with different values of n shows what the effects of
this truncation are. I’ve implemented this in a jupyter notebook that
you can download here.

With the default parameters that I have setup, it is great fun to
look at what happens in the vicinity of t = 63.5 and t = 127. This
unusual phenomenon is called wave packet revival.

From the formula

cn = 〈ψn(x)|Ψ(x, 0)〉

we see that we can think of the coefficients cn as representing how
much of the eigenstate ψn is present in Ψ(x, 0). But, is there a more
physical understanding of the cn? The answer is definitely yes.

We will prove this more carefully later in the course, but the cn are
the probability amplitudes for measuring energy En. That is,

|cn|2

represents the probability of measuring En. If this is right, it must be
that

∞

∑
n=1
|cn|2 = 1.

Let’s check our case, we have

|cn|2 =
6

n2π2

and indeed
∞

∑
n=1

1
n2 =

π2

6
! X.

Recall that we also have

〈♥〉 = ∑
n

Pn♥n.

Thus, we see that we can also write

〈Ĥ〉 =
∞

∑
n=1
|cn|2En.

http://faculty.bard.edu/~hhaggard/teaching/phys321Sp20/computing/
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