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Quantum Mechanics
Day 13

Today

I. Last Time
II. Ubiquity of Harmonic Oscillators
III. The Algebraic, Ladder Operator
Method
IV. The Prestige

I. Last Time

• Square wells, although quite idealized, are useful in applications,
e.g. the nuclear shell model. Protons and neutrons are tightly
bound in the nucleus due to the strong force—the potential can
be seen as a finite square well. We’ll study this soon. Also used
in optoelectronics, quantum well lasers, quantum well infrared
detector, et alius.

• We found a general state from its initial condition

Ψ(x, 0) =
∞

∑
n=1

cnψn(x)

with
cn = 〈ψn|Ψ(x, 0)〉 =

∫
ψ∗nΨ(x, 0)dx

and then

Ψ(x, t) =
∞

∑
n=1

cnψne−iEt/h̄.

• We applied this to one example initial state and saw how we
could animate the result using Python. This led us to numerically
discover the phenomenon of wave function revival.

II. Ubiquity of Harmonic Oscillators

We saw this already formally when we reviewed the Taylor series,
but let’s go over it again in a physical way. The famous force formula
for a harmonic oscillator

F = −kx = m
d2x
dt2

has solution
x(t) = A sin(ωt) + B cos(ωt),

with ω ≡
√

k/m. Viewed as a potential problem, this is

V(x) =
1
2

kx2 =
1
2

mω2x2.

Figure 1: The local structure of an
arbitrary potential in the neighborhood
of one of its minima.

The reason this potential is so important is that it resembles any
potential near its local minima. To confirm this we again Taylor
expand

V(x) = V(x0)︸ ︷︷ ︸
just a shift

+��
�*0

V′(x0)(x− x0) +
1
2

V′′(x0)(x− x0)
2 + · · · .
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So,

V(x) ≈ 1
2

V′′(x0)(x− x0)
2 =

1
2

k(x− x0)
2,

with k = mω2 = V′′(x0).
The ubiquity of this potential leads us to tackle the quantum

problem

− h̄2

2m
d2ψ

dx2 +
1
2

mω2x2ψ = Eψ.

The non-linear dependence on the independent variable in the x2

term makes this ODE tricky to solve. We’ll use an unfamiliar, but
amazing, algebraic method called the ‘ladder operator’ method today.
In time we will also tackle this directly as a differential equation.
While the ladder operator method is special, it will recur again and
again in your study of quantum mechanics and quantum field theory.

III. The Algebraic, Ladder Operator Method

First we write
1

2m

[
p̂2 + (mωx̂)2

]
ψ = Eψ.

While a sum of squares can’t be factored over the real numbers, in
the complex domain we have

z2 + w2 = (iz + w)(−iz + w).

However, for the Hamiltonian Ĥ we have the added complication
that p̂ and x̂ are operators. Let’s try anyway; we define

â± ≡
1√

2h̄mω
(∓i p̂ + mωx̂) ,

where the leading factor is purely to make subsequent formulas
nicer. Notice that the labels ± on â are not mnemonic for the signs in
their definitions. Why these labels are present will be clearer as we
proceed.

Using these definitions we can compute

â− â+ =
1

2h̄mω
(i p̂ + mωx̂)(−i p̂ + mωx̂)

=
1

2h̄mω

[
p̂2 + (mωx̂)2 − imω(x̂ p̂− p̂x̂)

]
.

Notice that in the last equality the order of operators matters! (This
would also be true for matrices.) We call

[Â, B̂] ≡ ÂB̂− B̂Â,

the commutator of Â and B̂. So,

â− â+ =
1

2h̄mω

[
p̂2 + (mωx̂)2

]
− i

2h̄
[x̂, p̂].
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Warning: Don’t treat operators like #’s, it’s too easy to make mis-

takes. To do it carefully, always act on a test function, say f (x).
For example,

[x̂, p̂] f (x) = (x̂ p̂− p̂x̂) f (x)

= x̂
h̄
i

d f
dx
− p̂ (x f (x))

= x
h̄
i

d f
dx
− h̄

i
d

dx
(x f )

= − h̄
i

f = ih̄ f .

Then,

[x̂, p̂] = ih̄.

This result is known as the “canonical commutation relation" for x̂
and p̂.

Returning to Ĥ, notice that we can now write

â− â+ =
1

h̄ω
Ĥ +

1
2

or

Ĥ = h̄ω

(
â− â+ −

1
2

)
.

Order matters—if we’d computed

â+ â− =
1

h̄ω
Ĥ − 1

2
.

In other words,

[â−, â+] = 1.

Then, in the other ordering

Ĥ = h̄ω

(
â+ â− +

1
2

)
.

Finally, the Schrödinger equation becomes (with both orderings)

h̄ω

(
â± â∓ ±

1
2

)
ψ = Eψ.

IV. The Prestige

Here’s the magic. Suppose ψ is a solution with energy E, then âψ is a
new solution with energy (E + h̄ω), that is,

Ĥ(â+ψ) = (E + h̄ω)(â+ψ).



4 hal haggard

Proof:

Ĥ(â+ψ) = h̄ω

(
â+ â− +

1
2

)
(â+ψ)

= h̄ω

(
â+ â− â+ +

1
2

â+

)
ψ

= h̄ωâ+

(
â− â+ +

1
2

)
ψ

= h̄ωâ+

(
â+ â− + 1 +

1
2

)
ψ

= â+
(

Ĥ + h̄ω
)

ψ

= â+ (E + h̄ω)ψ

= (E + h̄ω) â+ψ. �

You may not be surprised that

Ĥ(â−ψ) = (E− h̄ω)(â−ψ).

Figure 2: The ladder operators move
you up and down the ladder of states
for the harmonic oscillator.

This is a remarkable tool. The â’s are ladder operators with â+
the ‘raising operator’ and â− the ‘lowering operator’. Is the ladder
infinite? No!
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