Quantum Mechanics
Day 14

I. Last Time

2,2

¢ We identified why the harmonic oscillator potential V = %mw x

is so ubiquitous in Nature; it is the low energy effective potential
near any local minimum of an arbitrary potential.

¢ We introduced raising and lowering operators

. 1 o .
Ay = —— (Fip + mwg)

v 2hmw

and established the harmonic oscillator Hamiltonian
N o 1
H =hw <aiajF + 2) .
¢ We defined the commutator

AB - BA,

4, B]
and computed

[%,p) =ih  and [_,44] =1.

* We proved that if ¢ is an energy eigenstate of the harmonic oscil-
lator with energy E, then (4+¢) are also energy eigenstates with
eigenenergies E £ fiw.

II. The Prestige...Continued

This is a remarkable tool. The 4’s are ladder operators with 4 the
‘raising operator” and d_ the ‘lowering operator’. Is the ladder infi-
nite? No!

Soon you will prove on the homework that

E > Vmin-

So, there must be a state, call it ¢y, such that

a_1y = 0.
Let’s try to find it,
1 hod B dpg
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Figure 1: The ladder operators move
you up and down the ladder of states
for the harmonic oscillator.
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2 HAL HAGGARD

This gives
Inypy = —1@362 + const
o="37 ’
which simplifies to
mwx2
1[]0 — Ae” 2 ,

a very nice Gaussian! Normalizing this gives

/ AR dx = APy T — A= ()
— 00 mw

Thus, the ground state of the harmonic oscillator is

i) = () e

_— 2h
mth

Its energy is
1
hw (Mﬁ + 2) o = Eoto,

but a_1yy =0, so

1
Ehwlpo = Eoio - Ey = —.

III. All the Oscillator States from the Ladder

Having constructed the ground state, the idea of the ladder suggests
that we should be able to write

| $a(x) = Au(@4)"o(x),

for some normalization constant A,,, and

1
E, = (n+2> hw,

gives all the harmonic oscillator solutions!

This works. In fact, we can even find the A, algebraically. First

vy = cnPpyr and Ay = duyp,_yq,

for some n-dependent constants ¢, and d,. What are these constants?
Well, note that

(flaxcg) = (a=flg),
thatis, a1 =4_ and 4T = 4. Proof:
1
V2hmw

1 e i n . *
= m/iw((yp—i-mwx)f) gdx
axf1g)- u

(flaxg) =

/ f*(Fip + mwk) gdx

—~



Put this together with
(B nldsipn) = (0L n|Pn),
as well as
dyd_, =nyp,, and A_ai¢, = (n+1)P,
to find that

(@ ulaypn) = leal (P Pus1) = (04 1) (Yul ),
which implies
cn=vVn—+1.
Similarly
(A—tn|a—ypn) = |dn|2<l/)n—1|ll’n—1> = n(Pnln)

and hence
d, = /n.

In conclusion

AyPn = vVn+ 1Py,
ﬁ,tl)n = \/ﬁlpn—l/

and

P = —— ()"
n—\/— + 0-

n!

These results are so nice that we often abbreviate them even
further to make the structure yet more transparent. We define

n) = [n)
and write
ayln) =vVn+1n+1),
a_|n) = v |n—1),
and
1 A \N
In) = —=(a+)"|0).

N

These stationary states are orthonormal

(mln) = /_i 5 b dx = Gy

Proof: We compute

[ wntacaypudr=n [ g
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4 HAL HAGGARD

but also, applying our adjoint results
[ vt ygudr= [ @pu) (o) ax
= [ gy pudr=m [ g
For m # n, the only way that
n [ i =m [ g

is if
/ Prpndx = 0.

We defined the ¢, such that they were normalized and hence we’ve
proven that they are orthonormal.

A Uylx) | Ulx) E

/ > = =~ w2

o e s et i Sl e e e e o 1 W )

Potential

> 1 x
0 0

IV. Explicit Formulas

Much of what we’ve done above still remains implicit. Our one
explicit result is the ground state wave function

mw\1/4 _mw,2 1
%(x)—(%) e T, and EO—Ehw.

Figure 2: The first several harmonic
oscillator stationary states (left) and
the corresponding probability densities
(right).



DAY 14

Let’s illustrate that the above results can be made completely explicit
too. For example, compute

N 1 d mew\ 174 _mw 2
lpl(x) = a"rlpo(x) - \/ﬁ <_hdx +mwx) (ﬁ) e 2h X

_ (mw>1/4 mexe_%xz
-\ mh h '
It's a quick check to confirm that this wave function is properly

normalized.
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