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I. Last Time
II. The Free Particle
III. Wave PacketsI. Last Time

• As often happens with my exams, this exam was too hard. This
is a fault in my process around building exams and should not
be taken as your failing. Please take that statement to heart! I was
pleased with what you all did on the exam and it showed lots of
understanding in the direction that I hope to see you go. Keep up
your hard work!

• We played the number game, see e.g. Can You Solve This? I want
you to keep this game in mind as you review your exams. You
learn more by getting some things right and some things wrong.

• There are at least two troubles with my exam design process: 1. I
want exams to be too interesting. 2. In the pursuit of you getting
some things wrong, I often make the exam too difficult. But, do
keep in mind that you want to get some things wrong! If you
don’t, you haven’t learned anything from the process.

II. The Free Particle

What does it mean for a particle to be free? V = 0! So,

− h̄2

2m
d2ψ

dx2 = Eψ

or
d2ψ

dx2 = −k2ψ, with k ≡
√

2mE
h̄

.

Again this is the harmonic motion differential equation. But, now it’s
better to write

ψ(x) = Aeikx + Be−ikx.

Why this difference from the square well? Here there are no bound-
ary conditions—so E’s are not quantized! We just have that the
energy is directly related to the wave number, explicitly

E =
h̄2k2

2m
=

p2

2m
.

The full time-dependent solution is now

Ψ(x, t) = Aeik(x− h̄k
2m t) + Be−ik(x+ h̄k

2m t),

https://www.youtube.com/watch?v=vKA4w2O61Xo


2 hal haggard

with the first term a rightwards traveling wave and the 2nd a
leftwards traveling wave. Recall, however, that any f such that
f = f (x ± vt) is a wave moving in the ∓x direction with speed v.
(Note x + vt = const =⇒ dx/dt = −v.)

We often just write the one term

Ψk(x, t) = Aeik(x− h̄k
2m t)

and use the two signs of the wavenumber

k = ±
√

2mE
h̄

to capture the two directions of travel for the wave. Notice that I have
also added a subscript k to label the state—I am leveraging that a
solution is completely characterized by its wavenumber to enrich the
notation.

These stationary states have definite wavelength and momentum

λ =
2π

|k| and p = h̄k.

The speed at which they move is

vquantum =
h̄|k|
2m

=

√
E

2m
.

Note that (E = 1
2 mv2)

vclassical =

√
2E
m

= 2vquantum.

Apparently these stationary states are not, in themselves, modeling
classical particles with a definite energy.

Even worse Ψk is not normalizable:

|A|2
∫ ∞

−∞
Ψ∗k Ψkdx = |A|2

∫ ∞

−∞
dx = ∞|A|2.

These solutions are still immensely useful. They span the solutions of
Schrödinger’s equation. We can add together solutions of different k
with different multiplying weights to get any solution. There is a new
twist though, since k is a continuous variable the weights actually
make up a function, that is,

Ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k)eik(x− h̄k

2m t)dk.

III. Wave Packets

This wave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packetwave packet, because it combines a range of k’s, can be normaliz-
able!
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Suppose I’m given a Ψ(x, 0) that is normalizable, how do I find
φ(k)? This turns out to be a fancier version of Fourier’s trick and you
found the answer when you proved Plancherel’s theorem:

f (x) =
1√
2π

∫ ∞

−∞
F(k)eikxdk ⇐⇒ F(k) =

1√
2π

∫ ∞

−∞
f (x)e−ikxdx.

Applying Plancherel to the given Ψ(x, 0) we have

φ(k) =
1√
2π

∫ ∞

−∞
Ψ(x, 0)e−ikx dx,

and we can see that φ(k) determines the shape of the wave packet
Ψ(x, 0).

Why does combining wave numbers allow wave packets to be-
come normalizable? Let’s explore this through an example:
Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1:Ex 1: Let’s combine a finite number, say 3, plane waves. Let’s choose
k0, k0 − 1

2 ∆k, and k0 +
1
2 ∆k with amplitudes in the ratio 1 : 1/2 : 1/2

then

ψ(x) =
A√
2π

[
eik0x +

1
2

ei(k0− 1
2 ∆k)x +

1
2

ei(k0+
1
2 ∆k)x

]
=

A√
2π

eik0x
[

1 + cos
(

∆k
2

x
)]

.

This has a maximum at x = 0, but decreases as x increases due to
deconstructive interference between the constituent waves. The inter-
ference is completely deconstructive when the phase shift e±i 1

2 ∆kx is
−1, i.e. when

±∆x
2

(
±∆k

2

)
= π =⇒ ∆x∆k = 4π.

This illustrates a remarkable (and completely general) tradeoff; the
more localized the wave packet (small ∆x), the greater its width in
wave numbers (large ∆k, or ∆p). Tighter bounds relating these ranges
is what uncertainty principles are all about and will be our focus in
the future.

Figure 1: The structure of a wave
packet. The packet is made up of the
internal ripples, but interference effects
cause its amplitude to vary in space and
contain the wave packet. The envelope
curve is not part of the wave, but just
a way to guide the eye through the
changes in amplitude. The envelope can
be derived mathematically.

A typical structure for a wave packet is shown at right. The ripples
travel at the phase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocity

vphase =
ω

k
.

[Aside: In the present context

ω = ω(k) =
h̄k2

2m
,

but both the phase velocity above and the the argument we are about
to make will work for all dispersion relations ω = ω(k). ]


	I. Last Time
	II. The Free Particle
	III. Wave Packets

