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Quantum Mechanics
Day 18

Today

I. Last Time
II. Wave Packets & Group Velocity
III. Henry’s Guest Lecture on Gaussian
Wave Packets

I. Last Time

• We studied the free (V = 0) particle and found that we could
parametrize a basis of functions using the wave number k, these
are

Ψk(x, t) = Aeik(x− h̄k
2m t), with k = ±

√
2mE
h̄

.

These are energy eigenstates with definite energy, momentum, and
wavelength

E =
(h̄k)2

2m
, p = h̄k, and λ =

2π

|k| .

• We found that these waves travel with a surprising phase velocity

vquantum = 2vclassical =
h̄k
2m

= ±
√

E
2m

.

We also found that these solutions were not normalizable and that
their amplitudes never go to zero.

• Despite these surprising results, these solutions can be used
to span the space of solutions. We found that we could form
wave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packetswave packets out of them:

Ψ(x, 0) =
1√
2π

∫ ∞

−∞
φ(k)eikxdx.

Using Plancherel’s theorem we are able to find the right combina-
tion of wave numbers k to do this, namely the function φ(k),

φ(k) =
1√
2π

∫ ∞

−∞
Ψ(x, 0)e−ikxdk.

With the ‘shape’ φ(k) of the wave packet in hand, we can then
compute the full time-dependent wave function

Ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k)eik(x− h̄k

2m t)dx.

II. Wave Packets & Group Velocity

Figure 1: The structure of a wave
packet. The packet is made up of the
internal ripples, but interference effects
cause its amplitude to vary in space and
contain the wave packet. The envelope
curve is not part of the wave, but just
a way to guide the eye through the
changes in amplitude. The envelope can
be derived mathematically.

A typical structure for a wave packet is shown at right. The ripples
travel at the phase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocityphase velocity

vphase =
ω

k
.
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[Aside: In the present context

ω = ω(k) =
h̄k2

2m
,

but both the phase velocity above and the the argument we are about
to make will work for all dispersion relations ω = ω(k). ]

Figure 2: A wave packet’s shape
function that happens to be peaked
around k = k0.

But, what about the envelope? It moves as well, and travels at the
group velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocitygroup velocity. Start with

Ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k)ei[kx−ω(k)t]dk

and suppose that the shape function φ(k) is peaked near k0, as in the
figure at right. If it is peaked enough, it makes sense to expand the
dispersion relation around this point

ω(k) = ω0 + ω′0(k− k0) + · · · ,

where ω0 ≡ ω(k0) and ω′0 ≡ dω/dk|k0 . With these definitions we
can change variables in the integral to s ≡ k− k0 to center ourselves
around k0 and get k = k0 + s, dk = ds, and

Ψ(x, t) ≈ 1√
2π

∫ ∞

−∞
φ(k0 + s)ei[(k0+s)x−(ω0+ω′0s)t]ds,

where the approximation is because we have dropped the higher
order terms in our Taylor expansion of the dispersion relation.

Evaluating our wave function at t = 0 gives

Ψ(x, 0) = Ψ(x, t)
∣∣∣
t=0

=
1√
2π

∫ ∞

−∞
φ(k0 + s)ei(k0+s)xds.

At later times, we can take our time-dependent expression and
rewrite it in a clever way. We add and subtract to get

ei[−(ω0+ω′0s)t] = ei[−ω0t+k0ω′0t−k0ω′0t−ω′0st] = ei[−ω0t+k0ω′0t]ei[−(k0+s)ω′0t].

Notice that the first term doesn’t depend on s and so we can pull it
out of the integral to finally find

Ψ(x, t) ≈ 1√
2π

ei[−ω0t+k0ω′0t]
∫ ∞

−∞
φ(k0 + s)ei[(k0+s)x−(k0+s)ω′0t]ds

=
1√
2π

ei[−ω0t+k0ω′0t]
∫ ∞

−∞
φ(k0 + s)ei(k0+s)(x−ω′0t)ds.

But, then
Ψ(x, t) ≈ ei[−ω0t+k0ω′0t]Ψ(x−ω′0t, 0)!

Hence, up to an overall phase, the whole wave function travels as a
group, and moves at velocity

vgroup = ω′0 ≡
dω

dk

∣∣∣∣
k0

.



day 18 3

For our particular case

ω =
h̄k2

2m
and so

dω

dk
=

h̄k
m

.

This is twice the phase velocity vphase we found earlier:

vgroup = vclassical = 2vphase.

This is an exciting mathematical indication that a quantum wave
packet cancancancancancancancancancancancancancancancancan be the underlying structure for the classical particles so
familiar to everyday discussion. To confirm this hypothesis we turn
to experiment, of course. There is compelling evidence to support it
from the interference properties of buckyballs (C60) to measurements
of the internal wave packet structure of neutrons.

III. Henry’s Guest Lecture on Gaussian Wave Packets

I will add a scan of Henry’s guest lecture when I get a chance.

https://www.pdx.edu/nanogroup/sites/www.pdx.edu.nanogroup/files/%282003%29_Quantum%20interference%20experiments%20with%20large%20molecules.pdf
https://application.wiley-vch.de/books/sample/3527408851_c01.pdf
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