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I. Last Time

Could Quantum Mechanics be otherwise? We restricted attention
to real numbers for the moment and introduced two ‘norms’: the
1-norm

p1 + · · ·+ pN = ∑
i

pi = 1, pi ∈ [0, 1],

and the 2-norm

|α|2 + |β|2 + · · ·+ |ω|2 = 1, α, β, · · · ∈ R.

We can use the 2-norm if we interpret the squares as the probabilities.
For example, take (α, β) as variables, we want

|α|2 + |β|2 = 1.

Figure 1: The plane of values of α and β.
The set |α|2 + |β|2 = 1 is the unit circle
in this plane for real α and β.

All such (α, β) form a circle. But then, why not just forget about α

and β and only work with |α|2 and |β|2? That is, why not just return
to the 1-norm?

This led us to ask "Which transformations preserve the 2-norm?"
Answer: the orthogonal transformations. Matrices that represent an
orthogonal transformation satisfy

ÕO = I or Õ = O−1.

We found that rotations, like

R =

(
cos θ − sin θ

sin θ cos θ

)
,

are an example of orthogonal transformations. In fact, the full group
of orthogonal transformations is made up of rotations and parity
transformations, like

P =

(
−1 0
0 1

)
,

which is a reflection about the y-axis. (Notice that reflections also
preserve the length of a vector, i.e. the 2-norm.)

II. Transformations Continued

We turn now to the 1-norm. In probability theory a valid transforma-
tion must preserve the 1-norm of your state, e.g. starting with(

p
1− p

)
,
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a bit, one valid transformation is(
0 1
1 0

)(
p

1− p

)
=

(
1− p

p

)
,

which is sometimes called a bit flip. Did this result in another valid
probabilistic description of the transformed bit? Yes! Because it
preserved the 1-norm.

Question: What are the conditions on a completely generic matrix

S =

(
a b
c d

)
,

for it to give a valid transformation of a probabilistic bit? (These are
called stochastic matrices.)

To investigate this question we act S on a general bit state to find(
a b
c d

)(
p

1− p

)
=

(
ap + b(1− p)
cp + d(1− p)

)
.

We’d like to understand what are the possible freedoms for a, b, c,
and d. This transformation should work for any p, so take as an
example p = 1. Then the final state is(

a
c

)

and this final state must satisfy a ∈ [0, 1], c ∈ [0, 1], and the 1-norm
condition

a + c = 1 =⇒ c = 1− a.

We can also take the special case p = 0 to get the state(
b
d

)
,

which satisfies b ∈ [0, 1], d ∈ [0, 1], and the 1-norm condition if
d = 1− b. So, our stochastic matrix has the form

S =

(
a b

1− a 1− b

)
, with a, b ∈ [0, 1],

that is, it’s columns add up to 1. This generalizes to n× n stochastic
matrices.

We now have a complete characterization of the transformations
that preserve the 2-norm and those that preserve the 1-norm. So, can
these two types of transformations lead to different physics? The
answer is an emphatic yes!
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III. Interference

Last time we mentioned that a quantum two-state system was called
a qubit and in quantum mechanics we use the 2-norm. Now we’d
like to understand if there is a physical difference between the possi-
bilities using the 1-norm and the 2-norm.

Let’s consider a quantum coin. Our matrix formalism is rich
enough to encompass both outcomes of a the coin’s flip. Let’s inter-
pret the state (

1
0

)
to mean that we will definitely get heads. Similarly,(

0
1

)

means we will definitely get tails. The idea of the amplitude formal-
ism is that the general state

α

(
1
0

)
+ β

(
0
1

)
=

(
α

β

)

represents getting heads with probability |α|2 and tails with probabil-
ity |β|2.

Let’s use our new ability to transform outcomes and rotate the
state (

1
0

)
by 45◦. Putting 45◦ into our rotation matrix gives

R(45◦) =

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)
=

( 1√
2
− 1√

2
1√
2

1√
2

)
.

So our rotated state is( 1√
2
− 1√

2
1√
2

1√
2

)(
1
0

)
=

( 1√
2

1√
2

)
.

The resulting amplitudes 1/
√

2 and 1/
√

2 correspond to a 50-50
probability for the two outcomes. We’ve figured out how to ‘flip’ a
quantum coin.

Let’s consider doing it again, the resulting state is( 1√
2
− 1√

2
1√
2

1√
2

)( 1√
2

1√
2

)
=

(
0
1

)
.
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Strikingly, now the outcome is certain. The twice transformed state
definitely leads to a result of tails. By flipping a flipped coin we get a
definite answer. This is a quantum interference phenomenon! Notice
the essential role the minus sign played here—the two norm matters
for predicting the outcome of physical experiments.
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