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Quantum Mechanics
Day 4

Today

I. Last Time
II. A bit more probability
III. What’s to come?
IV. Fermat’s Principle

I. Last Time

• Explored a physical example with quantum interference—the
Mach-Zehnder interferometer.

• The 2-norm is what allows amplitudes to take center stage and,
hence, makes interference possible. We left open the mysteries of
complex numbers and linearity.

• We began probability theory. We defined

P(event e) =
# of events e

total # of events
,

which is subject to

∑
i

Pi = 1.

We also found
〈j〉 = ∑

j′s
jP(j),

and its generalizations and checked that

〈∆j〉 ≡ 〈(j− 〈j〉)〉 = 0.

II. A bit more probability

This brings us back to a computation that we were in the midst of
doing. We wanted to find

σ2 ≡ 〈∆j2〉 = ∑
j
(j− 〈j〉)2P(j)

= ∑
j
(j2 − 2j〈j〉+ 〈j〉2)P(j)

= ∑
j

j2P(j)− 2〈j〉∑
j

jP(j) + 〈j〉2 ∑
j

P(j)

= 〈j2〉 − 2〈j〉〈j〉+ 〈j〉2

= 〈j2〉 − 〈j〉2.

The last line supplies by far the easiest way to compute the standard
deviation

σ =
√
〈j2〉 − 〈j〉2.

This is a formula worth memorizing.
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That’s it, for (most) practical calculations we’re only going to need
〈j〉, σ, and P(j). However, we do need one more technique; that is,
the ability to deal with continuous probability distributions.

Suppose you want to know how probable your height is, how
would you go about finding out? You would grab a tape measure
and find your height, but only with limited precision. Let’s say it is
5’8"±1/16", then how probable is this?

To answer that question we need a function that tells us the like-
lihood of different heights and we need to integrate it. This is an
exceedingly important process.

P(your height) =
∫ 5′8”+1/16”

5′8”−1/16”
ρ(h)dh.

Notice that the increment dh is a small difference in heights, and
as such, carries units: [dh] =length (here feet and inches). But, if it
carries units, what does that mean about ρ(h)? It also must carry
units

[ρ(h)] =
probability

length
.

It is the denominator in this expression that leads us to call ρ and all
of its cousins “probability densities".

I like the way that Griffiths (and Schroeter) write this

ρ(h)dh =

Probability that an individual (chosen

at random) lies between h and h + dh.

Once you understand this, everything else is quite similar:

Figure 1: The meaning of the probabil-
ity density.
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∫ ∞

−∞
ρ(x)dx = 1

〈x〉 =
∫ ∞

−∞
xρ(x)dx

〈♥(x)〉 =
∫ ∞

−∞
♥(x)ρ(x)dx

σ2 ≡ 〈(∆x)2〉 = 〈x2〉 − 〈x〉2.

As you probably remember, the wave function ψ(x) is the analog
of the amplitudes α, β, etc, that we have been considering; that is,

ρ(x) = |ψ(x)|2 = ψ(x)∗ψ(x).

III. What’s to come?

My plan is to give you a brief introduction to where the wave for-
mulation of quantum mechanics comes from in the next 3 lectures.
This is not for culture or because it’s “good for you" to know the
history. Instead, I want to try and motivate that many unintuitive
ideas in quantum didn’t come out of nowhere, but were motivated by
classical mechanics. I want you to have some physical insight into the
definitions we will constantly use.

IV. Fermat’s principle

Light moving in a vacuum travels at a constant speed c. In a medium
with index of refraction n the speed is

v =
c
n

.

In a vacuum if we send light from a source point S to a detector
at point D, it travels in a straight line: What if the detector is

Figure 2: Straight-line motion of light in
vacuum.

embedded in a medium, say glass, then what is the path of the ray?

Figure 3: Light traveling from vacuum
into glass.
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The answer is familiar from Snell’s law, but Fermat gave a very
interesting formulation

Fermat’s principle: Light travels the path from S to D that is extremal
in time.

To test what Fermat’s principle says about this situation, let’s put
coordinates on our picture From the figure we can compute the

Figure 4: Light departs from a source in
vacuum at S and arrives at a detector D
in glass. What path does it take?

travel times in each medium

t1 =

√
h2

1 + x2

c
and t2 =

√
h2

2 + (L− x)2

c/n
.

Then the total travel time is

T = t1 + t2 =

√
h2

1 + x2

c
+

n
√

h2
2 + (L− x)2

c
.

We are looking for an extremum, so

dT
dx

= 0 =
1
2

2x

c
√

h2
1 + x2

− 1
2

2n(L− x)

c
√

h2
2 + (L− x)2

.

After canceling factors of c and 2, these fractions are precisely the
sines of the angles

=⇒ sin θ1 = n sin θ2. Snell’s law.
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