Quantum Mechanics
Day 5

I. Last Time

e We found an immensely useful formula for computing the vari-
ance and standard deviation
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* We thought carefully about probability densities and derived the
main results for probability theory in the continuum formalism.

¢ We introduced Fermat’s principle and used it to derive Snell’s law.

II. Fermat’s Principle in general

Of course, the index of refraction interface need not be as simple as
it is in the Snell’s law case, e.g. n could vary continuously n = n(h).
Indeed, this explains many desert mirages—the index of refraction
of air is not exactly one and varies with temperature. This allows
light leaving a palm tree to reach your eye along two different paths
The lower ray looks as though it has been reflected off of water.
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Let’s set up the general case

h bhodt [ds 1 /P 1 /P
T = ; dt = E/to I (dtdt>_c/s Eds— E/S n(s)ds.

where a small segment of the light ray has arclength ds. This shows

that the total travel time can be expressed directly in terms of the
varying index of refraction n(s). In general, then, you try to find the
path connecting S and D that extremizes this integral

Now, we’ve all been taught that the wave theory of light won
out, and so, these rays are fictitious. Really there are wave fronts
and rays are just a nice guideline overlay. So, is Fermat’s principle a
mathematical curiosity? A “divine miracle"? No! Actually it follows
most clearly from the wave theory.
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Figure 1: Two light rays leaving the
same point on a palm tree can both
reach your eye due to the varying index
of refraction fo the heated air.

Figure 2: The wavefronts of a point
source with rays traced as a guide.
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II1. Huygens’ principle

It is not our goal here to develop in full the wave theory of light, but
let’s pull in one of its beautiful principles.

If you're given a wave front, say of a plane wave, how do you
construct the next one in the train? C. Huygens gave an answer:
break the front into a (large) collection of point sources, then the next
front is give by the superposition of spherical waves emitting from
these sources. In particular, the next wavefront is the geometrical
envelop of these spherical wavelets. Notice the clean role of locality
in this construction.

The Fermat principle follows simply from Huygens’ principle.
Let’s take an example again. Because the local speed changes at

the glass interface, the wave fronts bend. This is due to wavelets in
the air rapidly catching up to those in the glass. A useful analogy
here is to a marching band marching across a partially dry and
partially muddy field. Marchers entering the mud slow and the other
marchers cover more ground, causing the wave front to ben.

IV. Foreshadowing

We turn now to discuss Hamilton’s remarkable observation that there
is a formulation of mechanics quite similar to Fermat’s principle of
optics.

V. The Opto-Mechanical Analogy

Hamilton noticed a striking correspondence. If we think of mechanics
as the pursuit of finding trajectories then it is quite similar to finding
optical rays.

If energy is conserved what determines how quickly a particle
moves through space? Well,
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Figure 3: The wavefronts of a point

source with rays traced as a guide.
Figure 4: example caption



We see that essentially the potential energy acts like an index of
refraction for the particle. This led Hamilton to introduce

Hamilton’s Principle: A particle travels the path between two fixed
points in space that extremizes the ‘action’
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Notice that

[S] = action

= [p][]

= angular momentum (L =7 x

xp
. 1
= energy - time (2 mv)ov - t)
= [n).

Action, while unfamiliar, is a remarkably versatile unit. Because
action is such a useful unit, our last line here defines a new constant.
All we know about this constant is that it has units of action and that
we are going to call it hbar’.

As an example of Hamilton’s principle, consider a free particle,
that is, a particle not subject to any potential, traveling from (x;,y;) to
(xf,yf) via an intermediate point (x,y). Then, let

S = \/2mE\/(x —xi)2+ (y—y;)? = V2mEs; and
S = \/ZmE\/(xf —x)2+ (yf —y)? = V2mEs;.

Here s and s; are just convenient shorthands for the two big square
rooted expressions. The total action is

S=51+S5,.

We extremize, first x,

B _y — 2mE<(xxi)—(xf_x))—O,
51
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then y,

®_o — 2mE<(y_yi)—(yf_y)>_o.
ay 51 52

These two conditions are equivalent to
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DAY 5 3

Xy

! S an M*&MM.

Figure 5: Amongst all trajectories
connecting x; and x; the physical
trajectory is the one that extremizes the
action S.
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Figure 6: What intermediate point
(x,y) gives the physical trajectory that
connects given endpoints?
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The slopes of the two segments are equal! The physical trajectory is
a straight line. A result that is completely consistent with what we
know about free particles.

Huygens’ principle leads us to ask whether a wave explanation
can also be given for Hamilton’s principle?
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