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Quantum Mechanics
Day 6

Today

I. Last Time
II. Refresher on Taylor Series
III. Schrödinger’s Insight
IV. The Schrödinger Equation

I. Last Time

• We generalized Fermat’s principle to the case of a spatially varying
index of refraction: the physical path of a light ray extremizes the
travel time

T =
1
c

∫ D

S
n(s)ds.

• By analogy we introduced the action

S =
∫ x f

xi

pdx,

where p =
√

2m[E−V(x)] and Hamilton’s principle: the physical
trajectories connecting xi and x f are extremals of the action.

• We saw that Huygens’ principle helped to explain Fermat’s princi-
ple; rays and their behavior arise naturally as a short wavelength
limit of the wave theory. We wondered whether a ‘wave theory of
mechanics’ might also shed light on Hamilton’s principle.

II. Refresher on Taylor series

Recall that given a function f (x) it is often quite useful to expand
it in a power series about some specific point x0. Taylor series are a
systematic way to do this and give

f (x) = f (x0) + f ′(x0)(x− x0) +
1
2!

f ′′(x0)(x− x0)
2

+
1
3!

f ′′′(x0)(x− x0)
3 + · · · .

One of the reasons this series is so useful is that it gives us a con-
trolled way to approximate the function f (x) near the point x0. If
we are very close to x0, then f (x0) is a good approximation to the
value of f (x). But, if we start to deviate more we can approximate
the adjustment by the slope of the function f at the point x0 times the
amount that we have moved away. This gives a linear approximation
to f in the neighborhood of x0. Next the series takes into account
how the function is quadratically curved and so on. The Taylor series
systematically builds up these approximations and takes into account
more and more features of how f varies near the point x0.
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III. Schrödinger’s Insight

In 1925-1926 E. Schrödinger was challenged to develop and had the
insight to find a wave theory for particle mechanics.

Starting from a wavefront T0 = const. we reach the next wave front
by following wavelets for a fixed period of time. Hence, all the level
sets of the wave field are given by surfaces of constant T, graphically

So, let’s require the same thing for S = S(x, t), that is,

1
h̄

S(x + λ, t) =
1
h̄

S(x, t) + 2π.

Notice that h̄ is required in this formula for dimensional consistency,
and again we have no physical interpretation for it yet.

Now, let’s suppose that λ is small, that is, that we are close to the
ray limit of the theory, then we can Taylor expand and find

1
h̄

(
S(x, t) + λ

∂S
∂x

+ · · ·
)
=

1
h̄

S(x, t) + 2π.

Simplifying between the two sides, this is

∂S
∂x

=
2πh̄

λ
.

Recalling the definition of the action

S =
∫

pdx

we have,
∂S
∂x

= p =
h
λ

;

de Broglie’s hypothesis comes right out of the idea to treat mechanics
as a wave theory analogous to the relationship between waves and
rays in optics! Next we will start to build this wave theory towards
Schrödinger’s equation.

IV. The Schrödinger Equation

So far we have developed the particle mechanics in close analogy
with optics. In optics we only considered an index of refraction
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that varied spatially n = n(x) and similarly in mechanics we only
considered momenta that varied spatially p = p(x), explicitly we
found

p(x) =
√

2m[E−V(x)].

In both the optical and the mechanical contexts we will want to
consider more general, time-varying quantities.

To hint at how to construct these quantities, let me leverage an-
other analogy. You have studied electric plane waves, which have the
form

~Eplane = ~E0ei(kx−ωt),

where ~E0 is an constant vector determining the amplitude and di-
rection of the electric field. The ‘wave number’ k is directly related
to the momentum of the wave and ω is related to the energy that it
carries.

Hamilton was deeply aware of this comparison, and actually
introduced a more general action than I discussed last time, it is
given by

S =
∫ t f

ti

(pẋ− H)dt. (1)

Notice that the first piece, pẋdt = pdx, is precisely our initial defini-
tion of the action. In this new action, the function H = H(x, p, t) is
known as the ‘Hamiltonian’ and in very many cases is just given by

H(x, p, t) =
p2

2m
+ V(x, t).

You will recognize this as the total energy of the system expressed
as a function, in this case a function of x and p (and sometimes t if V
happens to depend on t).

In time-dependent problems Hamilton’s principle remains the
same: the physical trajectories are those that extremize the action.
The difference is that the word action now refers to the extended
action function defined in Eq. (1).

Figure 1: The wavefronts of a point
source with rays traced as a guide.

Now that we have the full, time-dependent action, we can try to
apply Schrödinger’s insight again, this time to the time dependence.
In the time domain, a wave repeats after a period T (instead of after a
wavelength λ), and so we are looking to require

1
h̄

S(x, t + T) =
1
h̄

S(x, t)− 2π,

here the minus sign is motivated by the minus signs in Eq. (1) and in
the electric plane wave. Once again Taylor expanding the left hand
side gives

1
h̄

∂S
∂t

T = −2π or
∂S
∂t

= −h̄
2π

T
= −h̄ω.
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But, from the action
∂S
∂t

= −E,

where E is a level set of H, that is, all points such that H(x, p, t) = E.
Setting these expressions equal gives

E = h̄ω,

the Einstein relation!
Encouraged by the fact that we are recovering these pieces of the

history leading up to quantum theory, we proceed to derive a full
wave equation for mechanics, this will be the equation that governs
quantum mechanics. Again by way of analogy we note that we can
always break an arbitrary electric wave up into a superposition of
plane waves of the form

~Eplane = ~E0ei(kx−ωt).

Let’s try to do the same with our matter wave

Ψplane(x, t) = Re
i
h̄ S,

here we think of R as an amplitude for the wave, and we intend for S
to be the action. Why the action? Well, the reason is closely related to
what we’ve seen above, with this choice and with the standard form
for the energy

H(x, p, t) =
p2

2m
+ V(x, t),

we notice that
h̄
i

∂

∂x
Ψplane =

h̄
i

Re
i
h̄ S · i

h̄
∂S
∂x

= p ·Ψplane ,

and
h̄
i

∂

∂t
Ψplane =

h̄
i

Re
i
h̄ S · i

h̄
∂S
∂t

= −E ·Ψplane.

Then this way of writing things gives us the opportunity to ex-
press the conservation of mechanical energy, one of the deepest
foundations of mechanics, as a differential condition on our matter
wave:

− h̄
i

∂

∂t
Ψplane = − h̄2

2m
∂2

∂x2 Ψplane + V(x, t) ·Ψplane

Putting these observations together (Fermat, Huygens, Hamilton, ...)
Schrödinger guessed that any quantum wave should satisfy

ih̄
∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2 + V(x, t)Ψ, Schrödinger’s Eq. (2)
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I think this is a beautiful piece of theoretical physics—he drew to-
gether several different strands of ideas and used an inductive leap to
arrive at the correct generalization of all of them.

Notice the subtle, but profound shift in the meaning of momentum
too. It is both a physical property of the particle and a differential
operator that acts on the particle’s wave description.
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