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Quantum Mechanics
Day 7

Today

I. Last Time
II. Functions as Vectors?!
III. The Components of a FunctionI. Last Time

• We discussed Schrödinger’s insight that the dimensionless classi-
cal action

1
h̄

S =
1
h̄

∫ t f

ti

(pẋ− H)dt

could be viewed as a phase function for a wave theory of matter
particles and how this leads to

p =
h
λ

de Broglie’s relation,

and Einstein’s relation
E = h̄ω = hν.

• This led into introducing a plane matter wave

Ψplane(x, t) = Re
1
h̄ S,

where R is an amplitude and the exponent is again the classical
action function.

• We were then able to see that conservation of energy could be
expressed as an equation relating operators acting on these matter
waves. This gave Schrödinger’s equation

ih̄
∂Ψ
∂t

= − h̄2

2m
∂2Ψ
∂x2 + V(x, t)Ψ.

II. Functions as Vectors?!

Figure 1: Decomposition of a vector a
into its components in a basis.

I don’t need to convince you of the utility of the idea of a vector—
you’ve seen it. You also know the power of choosing a basis: once
you’ve chosen a basis any vector an be decomposed as a linear combi-
nation of your basis vectors. For example, in the vector space R2 we
might choose the basis {x̂, ŷ} and decompose

~a = ax x̂ + ayŷ.

We’ve already been using these ideas in our matrix computations,
where we’ve been writing this same basis as

x̂ =

(
1
0

)
and ŷ =

(
0
1

)
.
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In much of this course we are going to focus on wave functions
Ψ(x, t). Is there an analogous set of tools for functions? Can we
decompose a function into pieces? Can we introduce sets of functions
that act as a basis for all functions? If we could do this, what would
it require? Certainly it won’t be the same tool as in the 2D example
above. What specifically will be different? Remarkably, we can
implement these ideas with functions f (x).

Suppose f (x) is a periodic function with period L, then we can
write

f (x) =
1
2

a0 +
∞

∑
n=1

an cos
(

2πn
L

x
)
+

∞

∑
n=1

bn sin
(

2πn
L

x
)

.

Here the infinite collection of functions

cos
(

2πn
L

x
)

n = 0, 1, 2, 3, . . . ,

and

sin
(

2πn
L

x
)

n = 1, 2, 3, . . . ,

are acting as a basis for the periodic function f (x). Notice that we
include n = 0 in the first set to allow for the possibility of a con-
stant term in the expansion. (See if you can spot why the a0 term is
multiplied by 1/2 as we proceed. Including n = 0 in the sine series
does nothing, since sin(0) = 0). Also note that once again we have a
wave number kn = 2πn/L that makes the units in the arguments of
our basis functions make sense. This way of writing f (x) is called its
Fourier series.

III. The Components of a Function

If I give you a function f (x), how do you extract the constant ‘compo-
nent’ coefficients an and bn? Answering this question is a central goal
for our entire course. If we can figure out a way to do this, we will be
able to solve a whole host of practical problems in quantum theory.

Notice that even though we don’t always think about it this way,
that we do have an algorithm for doing this in the familiar vector
case. Given the vector~a, I can extract its x-component by computing

ax = x̂ ·~a,

and similarly
ay = ŷ ·~a.

Why does this work? Well, it’s because {x̂, ŷ} is an ‘orthonormal’
basis. Let’s break this jargon down. The ‘ortho’ part refers to the fact
that the basis is orthogonal, that is, x̂ · ŷ = 0. The ‘normal’ part refers



day 7 3

to the fact that the basis is normalized, that is, for both x̂ and ŷ we
have x̂ · x̂ = ŷ · ŷ = 1. These properties of the basis allow us to expand

x̂ ·~a = x̂ · (ax x̂ + ayŷ) = ax(x̂ · x̂) + ay(x̂ · ŷ) = ax.

If we want to generalize these ideas, the first thing we are going to
need is an ‘inner product’, that is, a continuum generalization of the
dot product used above. To signify that we are thinking of functions,
say f (x) and g(x), as a special kind of vector we introduce a new
notation, the Dirac ‘bra-ket’ notation (this name is supposed make
you think of a bracket): we write g(x) as a ‘ket’ that is as g(x)  |g〉.
We also write the transpose-conjugate of f (x) as f ∗(x) 〈 f |. (Notice
that the transpose does nothing to the function, as at any particular
x it is just a number; I only mention it here because it will come up
when we return to matrix mechanics.)

With this notation in place, we introduce the inner product

〈 f |g〉 ≡
∫ b

a
f ∗(x)g(x)dx,

and, as usual, the juxtaposition of the two functions on the right just
indicates multiplication. With this definition we can now ask if two
functions are orthogonal; let’s try cos

( 2π
L x
)

and cos
(

2π(2)
L x

)
over the

full region of periodicity [0, L],〈
cos

(
2π

L
x
) ∣∣∣ cos

(
4π

L
x
)〉

=
∫ L

0
cos

(
2π

L
x
)

cos
(

4π

L
x
)

dx

=
1
2

∫ L

0

[
cos

(
2π

L
x +

4π

L
x
)
+ cos

(
2π

L
x− 4π

L
x
)]

dx

= 0,

where the last equality follows from the fact that we are integrating
cosine functions that go through an integer number of periods in the
region x ∈ [0, L], and the integral of a cosine over a full period is zero.
Generalizing this example, you will find that for all m 6= n〈

cos
(

2πm
L

x
) ∣∣∣ cos

(
2πn

L
x
)〉

= 0.

Apparently the cosine functions with wave numbers kn determined
by the integers n are all orthogonal! This is starting to look like
a promising basis. What about the case where m = n? Let’s try
m = n = 1, so that〈

cos
(

2π

L
x
) ∣∣∣ cos

(
2π

L
x
)〉

=
∫ L

0
cos

(
2π

L
x
)

cos
(

2π

L
x
)

dx

=
1
2

∫ L

0

[
cos

(
2π

L
x +

2π

L
x
)
+ cos

(
2π

L
x− 2π

L
x
)]

dx

= 0 +
1
2

∫ L

0
1dx =

L
2

.
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Again, it’s a good exercise to check that this computation yields the
same result for all m = n. Apparently, these functions aren’t normal-
ized. But, that’s not a big deal, you’ve been practicing normalizing
functions on the homework. All we need to do to get a normalized
basis of functions is to change the set of functions we’re working
with

cos
(

2πn
L

x
)
−→

√
2
L

cos
(

2πn
L

x
)

.

Now, notice that were you do the exercises I mention above you
would arrive at an infinite collection of results, one for each value of
m and n. It is very convenient to introduce a shorthand notation that
summarizes all of these result. Define

δmn ≡

0 if m 6= n,

1 if m = n,

this symbol is known as the Kronecker delta and is a very efficient
way to summarize orthonormality. For example, we have just argued〈√

2
L

cos
(

2πm
L

x
) ∣∣∣√ 2

L
cos

(
2πn

L
x
)〉

= δmn.

For most of the course we will prefer to work with this and other
normalized bases. However, for just the remainder of today and next
time we will continue working with the unnormalized basis

cos
(

2πn
L

x
)

.

The only reason for this is that it is what people conventionally do in
the context of Fourier series.
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