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I. Last Time
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I. Last Time

• We introduced the idea that a function could be decomposed as a
sum over basis functions

f (x) =
1
2

a0 +
∞

∑
n=1

an cos
(

2πn
L

x
)
+

∞

∑
n=1

bn sin
(

2πn
L

x
)

.

• Following Dirac we introduced a ‘vector notation for functions’

|g〉 = g(x) thought of as a vector

〈 f | = the transpose conjugate of f (x) thought of as a ‘dual’ vector = f ∗(x).

• We defined an ‘inner product’ of functions

〈 f |g〉 =
∫ b

a
f ∗(x)g(x)dx.

• Finally, we studied the ‘Fourier basis’ for functions and showed〈
cos

(
2πm

L
x
) ∣∣∣ cos

(
2πn

L
x
)〉

=
L
2

δmn.

II. Refresher on Linearity

Recall that we call an operator M, any operator of any sort, linear if it
distributes over sums and if constants pull through it. For example, if
M is a matrix acting on a linear combination of vectors, we have

M (α~v + β~w) = αM~v + βM~w.

To check if a given operator is linear, you check if it satisfies this
equality and your are good to go.

III. Fourier’s Trick

The entire logic that we have pursued in this discussion is pushing
us towards a single idea. We will, perhaps a bit idiosyncratically, call
this idea Fourier’s trick. The idea of Fourier’s trick is to see if we can
mimic the vector dot product method for extracting components in
the context of functions. So, we first imagine, as we did above, that
we can write

f (x) =
1
2

a0 +
∞

∑
n=1

an cos
(

2πn
L

x
)
+

∞

∑
n=1

bn sin
(

2πn
L

x
)

.
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We want to find the coefficients a0, an, and bn that will make this a
true equality. To that end we try computing〈

cos
(

2πm
L

x
) ∣∣∣ f (x)

〉
.

Because integration is a linear operation, we can distribute the inner
product over sums and pull constants out front〈

cos
(

2πm
L

x
) ∣∣∣ f (x)

〉
=

〈
cos

(
2πm

L
x
) ∣∣∣1

2
a0 +

∞

∑
n=1

an cos
(

2πn
L

x
)
+

∞

∑
n=1

bn sin
(

2πn
L

x
)〉

=
1
2

a0

〈
cos

(
2πm

L
x
) ∣∣∣1〉+

∞

∑
n=1

an

〈
cos

(
2πm

L
x
) ∣∣∣ cos

(
2πn

L
x
)〉

+
∞

∑
n=1

bn

〈
cos

(
2πm

L
x
) ∣∣∣ sin

(
2πn

L
x
)〉

.

I leave it to you to check that:〈
cos

(
2πm

L
x
) ∣∣∣1〉 = δm0L

and 〈
cos

(
2πm

L
x
) ∣∣∣ sin

(
2πn

L
x
)〉

= 0, for all m and n.

If we take these two equalities for granted and assume we are inter-
ested in m 6= 0 for the moment , then we’ve shown that〈

cos
(

2πm
L

x
) ∣∣∣ f (x)

〉
=

∞

∑
n=1

an

〈
cos

(
2πm

L
x
) ∣∣∣ cos

(
2πn

L
x
)〉

=
∞

∑
n=0

an
L
2

δmn.

Now—and here is the magic of the Kronecker delta—if we sum over
one of the indices of a Kronecker delta we always only pull out one
element of the sum. Why? Well, it’s because whenever n 6= m the δmn

is zero, and hence we’re adding up (a whole bunch) of zeros, which
is zero. But, when n = m then δmm = 1 and that single term is the
value of the whole sum. In our present case we have

∞

∑
n=1

an
L
2

δmn = am
L
2

.

We love to see Kronecker deltas in a sum, it means we are going to
have to do no work, only a little thinking, to evaluate the entire sum.

An example might help. Suppose we are considering the specific
case m = 3, then〈

cos
(

2π · 3
L

x
) ∣∣∣ f (x)

〉
=

∞

∑
n=1

an
L
2

δ3n,
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and all the terms of this sum vanish, except when n = 3, where we
get 〈

cos
(

2π · 3
L

x
) ∣∣∣ f (x)

〉
=

∞

∑
n=1

an
L
2

δ3n,

= 0 + 0 + a3
L
2

δ33 + 0 + 0 + · · ·

= a3
L
2

.

Leveraging an orthonormal basis in this way is what we call Fourier’s
trick.

Putting all these insights together, we see that we now have a way
to extract the function’s coefficients

a3 =
2
L

〈
cos

(
2π · 3

L
x
) ∣∣∣ f (x)

〉
=

2
L

∫ L

0
cos

(
2π · 3

L
x
)

f (x) dx.

If we know what function f (x) is, we can now compute the right-
hand side and find a3. Or, much more generally,

an =
2
L

〈
cos

(
2πn

L
x
) ∣∣∣ f (x)

〉
=

2
L

∫ L

0
cos

(
2πn

L
x
)

f (x) dx, for n = 0, 1, 2, 3, . . . .

Hopefully you will practice all of the techniques outlined above to
show that

bn =
2
L

〈
sin
(

2πn
L

x
) ∣∣∣ f (x)

〉
=

2
L

∫ L

0
sin
(

2πn
L

x
)

f (x) dx, for n = 1, 2, 3, . . . .

We have successfully defined an inner product. Indeed we have
already seen ways in which it is useful for defining orthonormal
bases of functions, e.g.〈

cos
(

2πm
L

x
) ∣∣∣ cos

(
2πn

L
x
)〉

=
L
2

δmn,

and for extracting Fourier coefficients, as in the two formulas above.
It is also immensely useful conceptually and helps us to define the
function spaces we are going to be working on.

IV. Hilbert Spaces

The set of all sufficiently well-behaved complex-valued functions on
the real line {f(x)} is a vector space. You can check this by confirming
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that, e.g.,

z[ f (x) + g(x)] = z f (x) + zg(x),

where z ∈ C and so on for all the other vector space axioms.
A key point, however, is that we are not interested in all suffi-

ciently well-behaved functions. We want these functions to represent
wave functions, Ψ(x, t), and hence to be normalizable

∫ b

a
|Ψ(x, t)|2dx = 1.

A Hilbert space is a vector space of functions equipped with an inner
product whose members are functions that are square integrable, that
is, they have finite values for their norms∫ ∞

−∞
| f (x)|2dx < ∞.

Most often in the coming days we will work with Hilbert spaces
defined on either the whole real line or on a segment of it and these
Hilbert spaces are often written as L2(R) and L2([a, b]) respectively.
In shorthand notation

H = L2([a, b]) = {space of all functions f (x) s.t.
∫ b

a
| f (x)|2dx < ∞},

and similarly for L2(R). The superscript 2 in these definitions is
intended to make you think of the ‘2-norm’ that we started out the
course with!

There is one more important facet to Hilbert spaces. A set of
functions { fn(x)}∞

n=0 (or Hilbert space H ) is complete if any function
f (x) ∈H can be written in the form

f (x) =
∞

∑
n=0

cn fn(x).

In general the constants cn are complex and Fourier’s trick,

cn = 〈 fn| f 〉,

works if the set { fn} is orthonormal. When we say that some set of
functions forms an Hilbert space H we are also saying that those
functions are complete. When you can prove this, it is sometimes
called Dirichlet’s Theorem, see e.g. Boas, but we will mostly be
leaving such proofs to mathematicians and just assume this property.

Let’s briefly explore an example with complex cn. Euler’s famous
identity

eiθ = cos θ + i sin θ
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allows us to write the Fourier series we found above in a much more
compact form. Write

f (x) =
∞

∑
n=−∞

cnei 2πn
L x

and expand the exponential using Euler’s identity, then

f (x) =
∞

∑
n=−∞

cn

[
cos

(
2πn

L
x
)
+ i sin

(
2πn

L
x
)]

=
∞

∑
n=1

c−n

[
cos

(
2πn

L
x
)
− i sin

(
2πn

L
x
)]

+
∞

∑
n=0

cn

[
cos

(
2πn

L
x
)
+ i sin

(
2πn

L
x
)]

= c0 +
∞

∑
n=1

(c−n + cn) cos
(

2πn
L

x
)
+

∞

∑
n=1

i(cn − c−n) sin
(

2πn
L

x
)

.

Apparently this is equivalent to the standard Fourier series with
coefficients

a0 = 2c0,

an = (c−n + cn)

bn = i(cn − c−n).

You should check, using the appropriate Fourier’s trick, that the an

and bn that arise from these definitions are always real. It’s very cool
how it all fits together so cleanly!
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