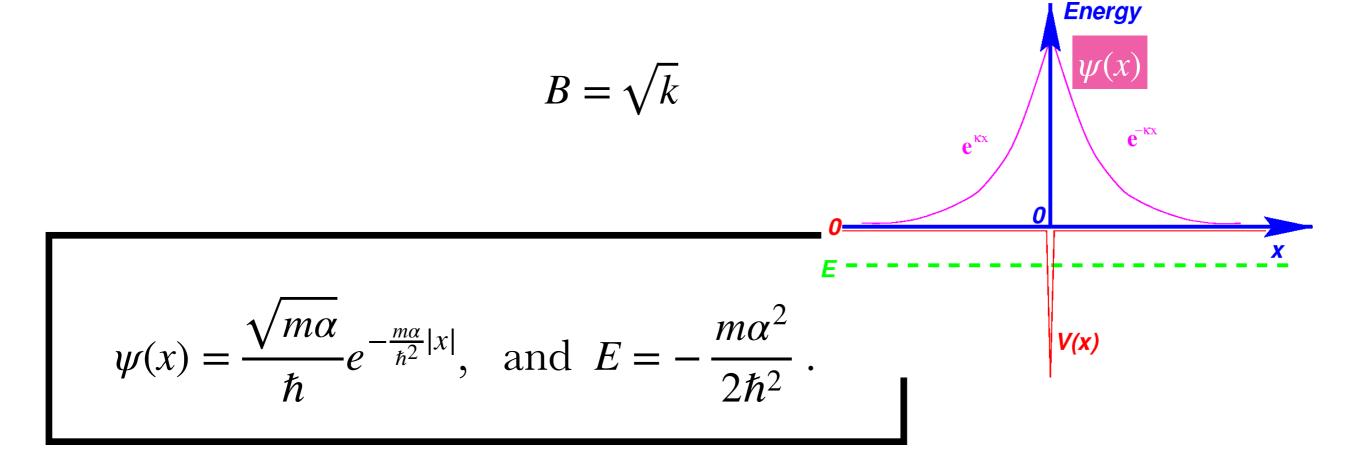
<u>Today</u>

- I. Zoom TourII. Last TimeIII. Scattering on Delta Well
- I. Last time
- * Ethan showed us how to get a matrix from an operator -Use an orthonormal basis $Q_{nm} = \langle n | \hat{Q} | m \rangle$
 - * States are represented by vectors $|v\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
 - * Operators act on states by matrix multiplication
 - * To find eigenvalues we write down a characteristic equation:

 $\det \left(Q_{nm} - \lambda I_{nm} \right) = 0$ $\hat{Q} | v \rangle = \lambda | v \rangle$

$$E = -\frac{k^2\hbar^2}{2m} = -\frac{m\alpha^2}{2\hbar^2}$$

Finally we determine B by normalizing:



Scattering states of the delta well with E > 0:

Wave function is continuous;

Derivative is continuous except when V is infinite.

$$\frac{d^2\psi}{dx^2} = -\frac{2mE}{\hbar}\psi = -k^2\psi$$

Solutions: $\psi(x) = Ae^{ikx} + Be^{-ikx}$ x < 0 $\psi(x) = Fe^{ikx} + Ge^{-ikx}$ x > 0

Continuity gives us A + B = F + G $\frac{d\psi}{dx} = Aike^{ikx} - Bike^{-ikx}$ x < 0 and $\frac{d\psi}{dx} = Fike^{ikx} - Gike^{-ikx}$ x > 0

The discontinuity is

$$\Delta \frac{d\psi}{dx} = ik(F - G) - ik(A - B)$$

But also, it's supposed to be: $\Delta \frac{d\psi}{dx} = -\frac{2m\alpha}{\hbar^2}\psi(0)$

Continuity gives us A + B = F + GThe discontinuity is

$$\Delta \frac{d\psi}{dx} = ik(F - G) - ik(A - B)$$

But also, it's supposed to be: $\Delta \frac{d\psi}{dx} = -\frac{2m\alpha}{\hbar^2}\psi(0) = -\frac{2m\alpha}{\hbar^2}(A+B)$

We learn, after algebra that

$$F - G = A(1 + 2i\beta) - B(1 - 2i\beta)$$
, where $\beta = \frac{m\alpha}{\hbar^2 k}$

For scattering:

A send a wave in \longrightarrow

B scattered wave \leftarrow

F transmitted wave \longrightarrow

G send wave in \leftarrow (not done G = 0)

So, G = 0, now we can solve for *B* and *F*...

Continuity gives us A + B = F $F = A(1 + 2i\beta) - B(1 - 2i\beta)$, where $\beta = \frac{m\alpha}{\hbar^2 k}$

$$B = \frac{i\beta}{1 - i\beta}A$$
 and $F = \frac{1}{1 - i\beta}A$

The relative probability of reflection:

$$R = \frac{|B|^2}{|A|^2} = \frac{\beta^2}{1+\beta^2}$$
 "reflection coefficient"

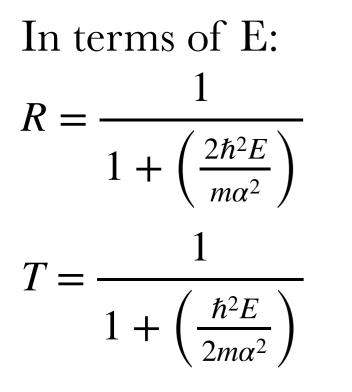
Tells you the fraction of particles that bounce back.

Similarly,

$$T = \frac{|F|^2}{|A|^2} = \frac{1}{1+\beta^2}$$

"transmission coefficient"

Note: $R + T = 1.\checkmark$



How do we interpret these results? The wave functions are not normalizable. You proceed as before with wave packets—easy idea, But difficult in practice and is often implemented on a computer.

What if we did a δ -barrier? $\alpha \mapsto -\alpha$ and the R and T are the same As for the well!

The particle has a non-zero probability of going through an ∞ barrier!

It doesn't go over the barrier—instead it tunnels through. This makes All sorts of electronics, microscopy, and other experiments possible. (e.g. Josephson junctions, Scanning tunneling microscope (STM), etc.)