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I. Last Time

II. 2D Infinite Square Well
II1. Angular Momentum

I. Last time
* Studied the 2D Sch. Eqn. Intro’d notation: 7 = (x,y). And
rr=xandr,=y.
x Separated variables and found y(x, y) = X(x)¥(y) satishied a
Sch. Eqn. For each component:
h* d*X
" 2m dx?
And similarly for ¥, with E, + E, = E.

FV.X =EX

*Studied the wide and deep and narrow and shallow limits of

the finite square well.



I. Finite square well: bound states

Our boundary conditions led us to

the transcendental relation
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Intersections give the

allowed z, which give

allowed ¢, which give
allowed E.



Limiting cases: For a wide, deep well
this should be related to the infinite

square well.
nw

Lint ~ Ly = 7 —d 2
>
then, the allowed energies are: X
Zn = fna = = —
h 2 -V
20 = 6.67 Or
i \ Tt n(z) |
/ n272h2
En + 0—
2m(2a)?
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T'hese are the square well
solutions above V,;, but only

works for finitely many n.

In the narrow, shallow limit there’s only one solution, but it’s there!



Let’s separate the final variables, x and y:

w(x,y) = X(x)Y(y) separation ansatz

h? d*X d*Y
Y(y)—— + X(x)— + VXY = EXY
2m dx? dy?

Dividing through by XY gives
nt (1d°X 1d%Y

—— +
X dx? Y dy?

2m

) + V(0 + V,(y) = E

'T'his leads us to two separated equations

h? 1 d*X

— + V.(x) = const. = E,
2m X dx?
h? 1 d*Y

Ry e FV,(y) = const. = E,

And E + E, = E. These are just two copies of the 1D Sch. Eq.
'Then the full solutions 1s y(x, y) = X(x)Y(y).



II. 2D Infinite Square Well

The potential:
Vix,y) = {

0 for x,y between 0 and a

o otherwise.

Solutions for X(x) and Y(y):

2 . (nm n’n*h*
X(x) =4/—sin | —x E. =
a a 2ma?

v \/§ AN - nyzﬂzhz
=4/—sin | — =
) a < a y> ¥ 2ma?

Then w(x,y) 1s

s () o (5
wx,y) =Xx)Y(y) =—sin| —x )sin|{ —y

a a a

T'hen the total energy 1s
m*h?

2ma?

E=E+E, = ;
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(nf + nz) Ny, N, = 1,2,3,....
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Ground state has (n,,n,) = (1,1). Notice also the two states

(1,2) and (2,1) are degenerate (that 1s, they have the same L).
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Then y(x, y) 1s

2 . <nx7r
= —sin
a
Let’s sketch the probability density for the ground state, (1,1)

a

w(x,y) = X(x)¥(y)

p(x,y) = |y, )|



Then y(x, y) 1s

2 n,m . n,m
wx,y) =Xx)Y(y) =—sin| —x ) sin| —y
a a a

Let’s sketch the probability density for the state, (3,4):
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[1I. Angular Momentum

Xy Z
First classically: L =7x p =det|x y z|,let’s focus on 2D and
Py Py P

hence on L, = xp, — yp,.

'To go trom the classical to the quantum theory, we introduce hats

I P s oo h 0 0
— L =%p, -9, =— [ x— —y— ).
¢ ¢ y T T dy Y ox

These expressions look even nicer in polar coordinates (r, ¢)

. y
Then x = rcos¢ and y = rsin ¢ d

Andr=\/x2 y? andtanqb:% 7




L L =3%p. —9p (2 0
— L =3p, -y, =— [ x— —y— ).
¢ ¢ y T T oy Y ox

These expressions look even nicer 1in polar coordinates (r, ¢)

Thenx =rcos¢g and y = rsin ¢ y 4 .
An(j[r=\/x2+y2ancﬁltanq§=Z
X

0 ord 0p o 0 sing 0 ?
— = + = COS p— —

ox OxoJdr Ox 0¢ or 1)

0 ord o0¢p 0 0 9,

s _7 + / =sinq§—+cos¢

dy 0y or dy d¢ or )

Putting all of these into the definition of L. gives
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