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Today

I. Last time 
* Studied the 2D Sch. Eqn. Intro’d notation:  And 

 
* Separated variables and found  satisfied a 

Sch. Eqn. For each component: 

 

And similarly for , with . 
*Studied the wide and deep and narrow and shallow limits of  
the finite square well.  

⃗r = (x, y) .
r1 = x and r2 = y .

ψ(x, y) = X(x)Y(y)

−
ℏ2

2m
d2X
dx2

+ VxX = ExX

Y Ex + Ey = E



I. Finite square well: bound states
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Our boundary conditions led us to 
the transcendental relation 
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Intersections give the 
allowed , which give 
allowed , which give 

allowed .

z
ℓ
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z0 = 6.67
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Limiting cases: For a wide, deep well 
this should be related to the infinite 
square well.
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zint ≈ zn =
nπ
2

then, the allowed energies are:

zn = ℓna =
a 2m(En + V0)

ℏ
=

nπ
2

En + V0 =
n2π2ℏ2

2m(2a)2

Or

These are the square well 
solutions above , but only 
works for finitely many n.

V0

In the narrow, shallow limit there’s only one solution, but it’s there!



Let’s separate the final variables, x and y: 
 separation ansatz 

 

Dividing through by  gives 

 

This leads us to two separated equations 

 

 

And . These are just two copies of  the 1D Sch. Eq. 
Then the full solutions is .

ψ(x, y) = X(x)Y(y)

−
ℏ2

2m (Y(y)
d2X
dx2

+ X(x)
d2Y
dy2 ) + VXY = EXY

XY

−
ℏ2

2m ( 1
X

d2X
dx2

+
1
Y

d2Y
dy2 ) + Vx(x) + Vy(y) = E

−
ℏ2

2m
1
X

d2X
dx2

+ Vx(x) = const. = Ex

−
ℏ2

2m
1
Y

d2Y
dy2

+ Vy(y) = const. = Ey

Ex + Ey = E

ψ(x, y) = X(x)Y(y)



II. 2D Infinite Square Well
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Solutions for  and : 

 

X(x) Y(y)

X(x) =
2
a

sin ( nxπ
a

x) Ex =
n2

x π2ℏ2

2ma2

Y(y) =
2
a

sin ( nyπ

a
y) Ey =

n2
y π2ℏ2

2ma2

Then  is  ψ(x, y)

ψ(x, y) = X(x)Y(y) =
2
a

sin ( nxπ
a

x) sin ( nyπ

a
y)

Then the total energy is   

      

Ground state has . Notice also the two states 
(1,2) and (2,1) are degenerate (that is, they have the same E).

E = Ex + Ey =
π2ℏ2

2ma2 (n2
x + n2

y ) nx, ny = 1,2,3,… .

(nx, ny) = (1,1)

E

The potential:   

V(x, y) = {0 for x, y between 0 and a
∞ otherwise .

Vin = 0 Vout = ∞



Then  is  ψ(x, y)

ψ(x, y) = X(x)Y(y) =
2
a

sin ( nxπ
a

x) sin ( nyπ

a
y)

Let’s sketch the probability density for the ground state, (1,1):

ρ(x, y) = |ψ(x, y) |2



Then  is  ψ(x, y)

ψ(x, y) = X(x)Y(y) =
2
a

sin ( nxπ
a

x) sin ( nyπ

a
y)

Let’s sketch the probability density for the state, (3,4):

ρ(x, y)



III. Angular Momentum

First classically: , let’s focus on 2D and 

hence on . 

To go from the classical to the quantum theory, we introduce hats 

. 

These expressions look even nicer in polar coordinates 

⃗L = ⃗r × ⃗p = det
̂x ̂y ̂z

x y z
px py pz

Lz = xpy − ypx

Lz ⟶ L̂z ≡ ̂x ̂py − ̂y ̂px =
ℏ
i (x

∂
∂y

− y
∂
∂x )

(r, ϕ)

x

y r

ϕ

Then  and  

And  and 

x = r cos ϕ y = r sin ϕ

r = x2 + y2 tan ϕ =
y
x



. 

These expressions look even nicer in polar coordinates 

Lz ⟶ L̂z ≡ ̂x ̂py − ̂y ̂px =
ℏ
i (x

∂
∂y

− y
∂
∂x )

(r, ϕ)

x

y r

ϕ

Then  and  

And  and 

x = r cos ϕ y = r sin ϕ

r = x2 + y2 tan ϕ =
y
x

 

 

∂
∂x

=
∂r
∂x

∂
∂r

+
∂ϕ
∂x

∂
∂ϕ

= cos ϕ
∂
∂r

−
sin ϕ

r
∂

∂ϕ
∂
∂y

=
∂r
∂y

∂
∂r

+
∂ϕ
∂y

∂
∂ϕ

= sin ϕ
∂
∂r

+
cos ϕ

r
∂

∂ϕ

Putting all of  these into the definition of   gives L̂z

L̂z =
ℏ
i

∂
∂ϕ


