Today

- I. Last Time
- II. 2D Infinite Square Well
- III. Angular Momentum
- I. Last time
- * Studied the 2D Sch. Eqn. Intro'd notation: $\vec{r} = (x, y)$. And $r_1 = x$ and $r_2 = y$.
- * Separated variables and found $\psi(x, y) = X(x)Y(y)$ satisfied a Sch. Eqn. For each component:

$$
-\frac{\hbar^2}{2m}\frac{d^2X}{dx^2} + V_xX = E_xX
$$

And similarly for *Y*, with $E_x + E_y = E$.

*Studied the wide and deep and narrow and shallow limits of the finite square well.

Limiting cases: For a wide, deep well this should be related to the infinite square well.

$$
z_{int} \approx z_n = \frac{n\pi}{2}
$$

then, the allowed energies are:

$$
z_n = \ell_n a = \frac{a\sqrt{2m(E_n + V_0)}}{\hbar} = \frac{n\pi}{2}
$$

Or

 $-V₀$

$$
E_n + V_0 = \frac{n^2 \pi^2 \hbar^2}{2m(2a)^2}
$$

−*a a*

V(*x*)

x

These are the square well solutions above V_0 , but only works for finitely many n.

In the narrow, shallow limit there's only one solution, but it's there!

Let's separate the final variables, x and y: $\psi(x, y) = X(x)Y(y)$ separation ansatz $-\frac{\hbar^2}{2}$ $\frac{Z}{2m}$ $\binom{Y(y)}{y}$ *d*2*X* $\frac{d^2x}{dx^2} + X(x)$ d^2Y $\left(\frac{dy^2}{dy^2}\right) + VXY = EXY$

Dividing through by XY gives

$$
-\frac{\hbar^2}{2m}\left(\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{dy^2}\right) + V_x(x) + V_y(y) = E
$$

This leads us to two separated equations $-\frac{\hbar^2}{2}$ 2*m* 1 *X d*2*X* $\frac{d^{2}x}{dx^{2}} + V_{x}(x) = \text{const.} = E_{x}$ $-\frac{\hbar^2}{2}$ 2*m* 1 *Y* d^2Y $\frac{d^2y}{dy^2} + V_y(y) = \text{const.} = E_y$

And $E_x + E_y = E$. These are just two copies of the 1D Sch. Eq. Then the full solutions is $\psi(x, y) = X(x)Y(y)$.

II. 2D Infinite Square Well

The potential:

 $V(x, y) = \begin{cases}$ 0 for *x*, *y* between 0 and *a* ∞ otherwise .

Solutions for *X*(*x*) and *Y*(*y*):

$$
X(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n_x \pi}{a} x\right) \qquad E_x = \frac{n_x^2 \pi^2 \hbar^2}{2ma^2}
$$

$$
Y(y) = \sqrt{\frac{2}{a}} \sin\left(\frac{n_y \pi}{a} y\right) \qquad E_y = \frac{n_y^2 \pi^2 \hbar^2}{2ma^2}
$$

Then $\psi(x, y)$ is

$$
\psi(x, y) = X(x)Y(y) = \frac{2}{a}\sin\left(\frac{n_x\pi}{a}x\right)\sin\left(\frac{n_y\pi}{a}y\right)
$$

Then the total energy is

$$
E = E_x + E_y = \frac{\pi^2 \hbar^2}{2ma^2} \left(n_x^2 + n_y^2 \right) \quad n_x, n_y = 1, 2, 3, \dots
$$

Ground state has $(n_x, n_y) = (1,1)$. Notice also the two states $(1,2)$ and $(2,1)$ are degenerate (that is, they have the same E).

Then
$$
\psi(x, y)
$$
 is
\n
$$
\psi(x, y) = X(x)Y(y) = \frac{2}{a} \sin\left(\frac{n_x \pi}{a} x\right) \sin\left(\frac{n_y \pi}{a} y\right)
$$

Let's sketch the probability density for the ground state, (1,1):

Then
$$
\psi(x, y)
$$
 is
\n
$$
\psi(x, y) = X(x)Y(y) = \frac{2}{a} \sin\left(\frac{n_x \pi}{a} x\right) \sin\left(\frac{n_y \pi}{a} y\right)
$$

Let's sketch the probability density for the state, (3,4):

III. Angular Momentum

First classically:
$$
\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} = \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ x & y & z \\ p_x & p_y & p_z \end{vmatrix}
$$
, let's focus on 2D and
hence on $L_z = xp_y - yp_x$.

To go from the classical to the quantum theory, we introduce hats $L_z \longrightarrow \hat{L}_z \equiv \hat{x}\hat{p}_y - \hat{y}\hat{p}_x = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right).$ ̂ \hbar *ⁱ* (*^x* ∂ $\frac{\partial}{\partial y} - y$ ∂ ∂*x*)

These expressions look even nicer in polar coordinates (r, ϕ)

Then
$$
x = r \cos \phi
$$
 and $y = r \sin \phi$
And $r = \sqrt{x^2 + y^2}$ and $\tan \phi = \frac{y}{x}$

$$
L_z \longrightarrow \hat{L}_z \equiv \hat{x}\hat{p}_y - \hat{y}\hat{p}_x = \frac{\hbar}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right).
$$

These expressions look even nicer in polar coordinates (r, ϕ)

Putting all of these into the definition of \hat{L}_z gives ̂ $L_z =$ ̂ \hbar *i* ∂ ∂*ϕ*