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I. Last time 
* Two compatible angular momentum observables .  
* We started studying the ang. mom. eigenfunctions using a 

separation ansatz: .  
* Found  and  in spherical coordinates. We also found 

each component and the ladder operators in these coord.s

L2, Lz

f m
ℓ (θ, ϕ) = Θ(θ)Φ(ϕ)

Lz L2



I. Derivation of  angular momentum eigenfunctions.

Classically, . We want to convert this into operators 

. 

In spherical coords. (natural for ang. momentum and rotations) 

. 
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I. Derivation of  angular momentum eigenfunctions.

The ladder operator are slightly simpler 
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I. Derivation of  angular momentum eigenfunctions.
From which  
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Now, recall 

, where . Let’s suppose  
    (separation ansatz) to find 

   (1) 

 (2). 
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II. Derivation of  angular momentum eigenfunctions.

Let’s focus on (1) at first 

   (1) 

It has solutions 
. 

Boundary conditions tell us the allowed values for , in the present 
case they are 

.  
Let’s impose this 

, 
The last condition is satisfied when  

1
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Φ(ϕ) = eimϕ

m

Φ(ϕ + 2π) = Φ(ϕ)

eim(ϕ+2π) = eimϕ ⟹ eim2π = 1

m = 0, ± 1, ± 2,… .



II. Derivation of  angular momentum eigenfunctions.

Let’s focus on (2) at first 

   (2) 

It has solutions 
, 

where  is the associated Legendre polynomial (or function), 

,  

which in turn is defined in terms of  the Legendre polynomial 

. 

This last formula is called the Rodrigues formula. 

1
Θ [sθ

d
dθ (sθ

dΘ
dθ )] + ℓ(ℓ + 1)s2θ = m2

Θ(θ) = APm
ℓ (cos θ)

Pm
ℓ

Pm
ℓ (x) = (1 − x2)|m|/2( d

dx )
|m|

Pℓ(x)

Pℓ(x) =
1

2ℓℓ! ( d
dx )

ℓ

(x2 − 1)ℓ



II. Derivation of  angular momentum eigenfunctions.

This all amounts to having found the “spherical harmonics”  

. 

These are also orthogonal (why?). So,  

. (Beware the 

Condon-Shortley phase. Also the Geodesy convention, which is a 
real basis for spherical harmonics.) 

Our first example of  a basis for functions were  and  in the 
context of  Fourier analysis. The intuition for spherical harmonics is 
exactly the same—they provide a basis of  functions for the sphere. 

Ym
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III. The Radial Equation
In 3D we realized that we could do many of  the same things that we 
had done in 1D: 

. 

Just as in 1D if  , then 
. 

As in 1D we interpret 
 

as the probability of  finding the particle in a volume . We also 
again have 

 

Let’s study a very special case, one where  
 

only depends on the radial distance . 
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III. The Radial Equation

In these spherical coordinates 

 

Notice that part of  this (the last two terms) is exactly  

. 

Once again we’re tempted to try and use separation of  variables 
. 
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III. The Radial Equation

 

Dividing by  and multiplying by : 
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