loday
I. Last Time

II. Dervation of the Angular Momentum Eigentunctions...

Continued
I1I. Radial Equation

I. Last ime

* Two compatible angular momentum observables L?, L..

* We started studying the ang. mom. eigenfunctions using a
separation ansatz: (0, ¢) = O(0)P(¢).

* Found L, and L* in spherical coordinates. We also found

each component and the ladder operators 1n these coord.s



[. Dernvation of angular momentum eigenfunctions.

Classically; L =7xP. We want to convert this into operators
> h, —
L = —7r X V.
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In spherical coords. (natural for ang. momentum and rotations)
- 0 5 lo -~ 1 0
=7 I '

or  rdd  rsin@op’

Now, ¥ = r#, so
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[. Dernvation of angular momentum eigenfunctions.

Then, : )
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T'he ladder operator are shightly ssmpler
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I. Dernvation of angular momentum eigenfunctions.

From which

> K 0 , 0 0
LiL_=—1 |— +cotd— +cot’ — + i—
00? 00 0h? a¢
2 [ 1 0 0 1 0?
L*=—-nh sO0— | +
000\ 00) ' 520 og>

Now, recall
Lf ;= (¢ + 1f 7, where f7' = f7(0, ¢). Let’s suppose
[0, p) = B(O)D(p) (separation ansatz) to find
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II. Derivation of angular momentum eigenfunctions.

Let’s focus on (1) at first
1 d*®
=—m® (1
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It has solutions
D(p) = ™.

Boundary conditions tell us the allowed values for m, in the present

case they are

D(p + 27) = D(o).

Let’s impose this
' 2 ' m2n
ezm(gb+ m) — ezmqb — pm2n — 1)

The last condition 1s satisfied when

m=0,x1,x2,....



II. Derivation of angular momentum eigenfunctions.

Let’s focus on (2) at first

1 d doe
— [s0— (50— ) | + (€ + 1)s?0 ¢ = m?* (2)
®| dob dé

It has solutions
O(0) = AP]'(cos 0),

where PJ'1s the associated Legendre polynomial (or function),
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which 1n turn 18 defined 1n terms of the Legendre polynomial
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T'his last formula 1s called the Rodrigues tormula.




II. Derivation of angular momentum eigenfunctions.

T'his all amounts to having found the “spherical harmonics™

QE+ 1) —|m))!
da(C + |m|)!

Y20, ) = D($)O(0) = \/ e™? P (cos 0).

These are also orthogonal (why?). So,
2r om
[ [ (Y20, p)| Y26, P)| sinOdOdp = 5,,8,,,. (Beware the
0 Jo=0
Condon-Shortley phase. Also the Geodesy convention, which 1s a

real basis for spherical harmonics.)

Our first example of a basis for functions were sin and cos in the
context of Fourier analysis. The intuition for spherical harmonics 1s

exactly the same—they provide a basis of functions for the sphere.



III. The Radial Equation

In 3D we realized that we could do many of the same things that we

had done 1in 1D:
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As in 1D we interpret LF T
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as the probability of finding the particle in a volume d°7. We also
again have
h2
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Let’s study a very special case, one where
V(r) = V(r)

only depends on the radial distance r = | 7| .



III. The Radial Equation

In these spherical coordinates
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Notice that part of this (the last two terms) 1s exactly
1
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Once again we’re tempted to try and use separation of variables

w(r,0,¢) = R(r)Y(0, §).

Then
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III. The Radial Equation
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Dividing by RY and multiplying by —2mr?*/h*:
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