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I. Last time 
* Separation of  variables to arrive at the radial and angular 

Schrodinger equations in 3D. 
* Found the eigenstates of   and , which turned out to be 

the spherical harmonics .  
* One intuition behind these functions is that they provide a 

basis for all functions on the sphere. We can also think of  
them as describing the quantum states of  definite magnitude 
of  angular momentum and definite z-component of  ang. 
mom. These are made up of   and solutions to 
Legendre’s equation.  
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I. Derivation of  angular momentum eigenfunctions.

Let’s focus on (1) at first 

   (1) 

It has solutions 
. 

Boundary conditions tell us the allowed values for , in the present 
case they are 

.  
Let’s impose this 

, 
The last condition is satisfied when  
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m = 0, ± 1, ± 2,…, ± ℓ .



I. Derivation of  angular momentum eigenfunctions.

Let’s focus on (2) at first 

   (2) 

It has solutions 
, 

where  is the associated Legendre polynomial (or function), 

,  

which in turn is defined in terms of  the Legendre polynomial 

. 

This last formula is called the Rodrigues formula. 
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I. Derivation of  angular momentum eigenfunctions.

This all amounts to having found the “spherical harmonics”  

. 

These are also orthogonal (why?). So,  

. (Beware the 

Condon-Shortley phase. Also the Geodesy convention, which is a 
real basis for spherical harmonics.) 

Our first example of  a basis for functions were  and  in the 
context of  Fourier analysis. The intuition for spherical harmonics is 
exactly the same—they provide a basis of  functions for the sphere. 
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I. The Radial Equation

In these spherical coordinates 

 

Notice that part of  this (the last two terms) is exactly  

. 

Once again we’re tempted to try and use separation of  variables 
. 

Then  
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I. The Radial Equation

 

Dividing by  and multiplying by : 
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II. Completing Our Discussion of  the Radial Equation

Notice that the second operator is ang. mom. squared roughly, 

, 

So the solutions to the angular equation are the spherical harmonics. 
This means that  
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II. Completing Our Discussion of  the Radial Equation
This means that  

; 

let’s study this equation. Let’s change variables to  
    or    .  Let’s compute derivatives 

, 

. 

Then our differential equation in terms of   becomes 

 

Or 

,   where   
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II. Completing Our Discussion of  the Radial Equation

,   where    

Let’s consider a particular potential, just to get a feel for what this 
looks like. The hydrogen atom potential is  

, 

then the effective potential is  

−
ℏ2

2m
d2u
dr2

+ Veffu = Eu Veff (r) = V(r) +
ℏ2

2m
ℓ(ℓ + 1)

r2

V(r) = −
1

4πϵ0

e2

r
= −

kee2

r

Veff = −
kee2

r
+

ℏ2

2m
ℓ(ℓ + 1)

r2



III. The ‘Old’ Quantum Theory of  Hydrogen (The Bohr Model)
Classical Circular Orbit 

      centripetal force for a circular orbit 

This gives 

.  

The total energy in the system (KE+PE), 

 

The angular momentum of  this circular orbit is 
, 

And 
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