loday

I. Last Time
II. Gompleting Our Discussion of the Radial Equation
I11. The ‘Old” Quantum Theory of Hydrogen

I. Last ime

* Separation of variables to arrive at the radial and angular
Schrodinger equations 1n 3D.

* Found the eigenstates of L* and L, which turned out to be
the spherical harmonics Y7'(0, ¢).

* One intuition behind these functions is that they provide a
basis for all functions on the sphere. We can also think of
them as describing the quantum states of definite magnitude
of angular momentum and definite z-component of ang.
mom. These are made up of ¢ and solutions to

Legendre’s equation.



I. Dernvation of angular momentum eigenfunctions.

Let’s focus on (1) at first
1 d*®
=—m® (1
D dop?
It has solutions
D(p) = ™.

Boundary conditions tell us the allowed values for m, in the present

case they are

D(p + 27) = D(o).

Let’s impose this
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The last condition 1s satisfied when

m=0,x1,£2,...,x7.



I. Dernvation of angular momentum eigenfunctions.

Let’s focus on (2) at first
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It has solutions
O(0) = AP]'(cos 0),

where PJ'1s the associated Legendre polynomial (or function),
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which 1n turn 18 defined 1n terms of the Legendre polynomial
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T'his last formula 1s called the Rodrigues tormula.




I. Dernvation of angular momentum eigenfunctions.

T'his all amounts to having found the “spherical harmonics™
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Y20, ) = D($)O(0) = \/ e™? P (cos 0).

These are also orthogonal (why?). So,
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[ [ (Y20, p)| Y26, P)| sinOdOdp = 5,,8,,,. (Beware the
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Condon-Shortley phase. Also the Geodesy convention, which 1s a

real basis for spherical harmonics.)

Our first example of a basis for functions were sin and cos in the
context of Fourier analysis. The intuition for spherical harmonics 1s

exactly the same—they provide a basis of functions for the sphere.



I. The Radial Equation

In these spherical coordinates
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Notice that part of this (the last two terms) 1s exactly
1
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Once again we’re tempted to try and use separation of variables

w(r,0,¢) = R(r)Y(0, §).

Then
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I. The Radial Equation

h? 0 , dR h? .
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Dividing by RY and multiplying by —2mr*/h*:
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II. Completing Our Discussion of the Radial Equation

Notice that the second operator 1s ang. mom. squared roughly;

1
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So the solutions to the angular equation are the spherical harmonics.
'T'his means that
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II. Gompleting Our Discussion of the Radial Equation
T'his means that
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let’s study this equation. Let’s change variables to

u(ry=rR(r) or R(r) =u/r. Let’s compute derivatives
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T'hen our differential equation 1n terms ot u# becomes
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— + | V(r) + u = Eu
2m dr? 2m 12
Or
h’ d’u W+ 1)

R + Voget = Eu, where V.g(r) = V(r) A ST



II. Gompleting Our Discussion of the Radial Equation

72 du A+ 1)
gy Vel = B where V() = V(o)
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Let’s consider a particular potential, just to get a feel for what this

looks like. 'The hydrogen atom potential 1s
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then the effective potential 1s
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I11. The ‘Old” Quantum Theory of Hydrogen (1'he Bohr Model)
Classical Circular Orbit

mv?  ke? . . .
— =— centripetal force for a circular orbit
r r
This gives
ke? N
= my-.
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The total energy 1n the system (KE+PE),
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T'’he angular momentum of this circular orbit 1s
|L|=|FXD|=rmy,

And

L? 1 k,e?
E=|(- =— .
2mr? 2 r




