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I. Last time 
*Intro’d a power series solution to try and solve the Hydrogen atom 

radial wave function: part of  that was . (Recall  

followed on from ) 
*The power series  came from stripping off  the asymptotic behavior 
of  , where . 
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I. Our Result for the Radial Equation

,   where    

Let’s consider a particular potential, just to get a feel for what this 
looks like. The hydrogen atom potential is  
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I. Series Method for Hydrogen atom
Let’s introduce a wave number for bound states 

. 

Plugging this in we find  

, 

Let’s introduce nice variables 

    and   . 

Then we have the clean form 

. 

Let’s look for the asymptotic behavior of  this equation, let’s take up 
the case …
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I. Series Method for Hydrogen atom
Then we have the clean form 

. 

Let’s look for the asymptotic behavior of  this equation, let’s take up 
the case  where  

, 

and the solutions are just 
. 

There’s no way that the second term is normalizable, so we only 
keep 

.  
The other asymptotic regime is , where 

,   with solution  (check it). 
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I. Series Method for Hydrogen atom
Then we have the clean form 

. 

There’s no way that the second term is normalizable, so we only 
keep 

.  
The other asymptotic regime is , where 

,   with solution  (check it). The 

normalizable one is . Then our full ansatz for the power 
series method is going to be 

. Putting this in the resulting differential equation 
is 
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I. Series Method for Hydrogen atom

Starting with 

, 

we now guess a solution of  the form 

.  

Now we grind 

  

And for the second derivative 
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I. Series Method for Hydrogen atom
Starting with 

, 

we now guess a solution of  the form 

.  

Now we grind 

  

And for the second derivative 

. 

ρ
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I. Series Method for Hydrogen atom

 

Setting the coefficients of  every term equal to zero we learn that 
. 

This gives the recursion relation: 

. 

Let’s imagine for a moment that this recursion never ends, then for 
large , we can approximate it in a simpler form: 

. 

This new recursion and it has an approximate solution 

, which implies ; nota bene(!!!)…
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II. Series Method for Hydrogen atom
This new recursion and it has an approximate solution 

, which implies ; nota bene(!!!)… 

…this is a bad solution! It doesn’t meet our boundary conditions, in 
particular, we can’t normalize it. This means that we can’t allow the 
recursion to continue to large . So, instead we force it to end:  

 implies that the numerator should vanish 

for some value of  , which we will call . Then 
, then with , we get . We now have 
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II. Series Method for Hydrogen atom

Then the total wave function is  
, 

Where  

, 

Where  is determined by  

 

Also . 

ψnℓm(r, θ, ϕ) = Rnℓ(r)Ym
ℓ (θ, ϕ)

Rnℓ(r) =
1
r

ρℓ+1e−ρv(ρ)

v(ρ)

cj+1 =
2( j + ℓ + 1 − n)

( j + 1)( j + 2ℓ + 2)
cj .

ρ ≡
r

an


