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[. Last ime

*Introduced spin, e.g. algebraically it has the exact same structure as

orbital angular momentum: [S,, S,] = ihS,.

*Pauli spin matrices

0=01 (;:O_i and6=10
* 1 0/ 7 i 0) ©\0 —-1)°

the spin operators are then just
n

*Found the radial wave functions for the Hydrogen using the power

series method for solving difterential equaitons.



II. Series Method for Hydrogen atom

Then the total wave function 1s , 2 , r
m

anm(ra 99 ¢) — Rm”(r)YZl(ea ¢): En = : ‘ — — _1
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Where v(p) is determined by 4 ng o ng

. 2(j L”+1—n)c 5\ 2

MG DG +20+2) 7 g = 4mehg <4e > = 1.097 X 10'm~!
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Also p = —. ’

an
Alternatively we can write these things as
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II. Hydrogen atom wave functions
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II. Hydrogen atom wave functions
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III. A Second L.ook at Spin vooAy
Thinking about bases can be subtle. Let’s first dondid ac@al

vector (the one purple above). Ditterent choices o

2s1s lead to

>

ditferent expressions for this vector. '1'he turquorse pector represents

the basis vector X', which I can express in the xy-basis.

First let’s relate Dirac notation to Matrix notation:

11
| s m) or more specifically 5 5> =|1) ((1)) (in the z-basis),

11
The spin 1/2 particle down 1s 5 5> =||) (?)

In general, a spin state 1s a general superposition of these two states,

Y= (Z) = ay, + by_; 1n this state the probability of measuring spin

up 1s la|? and that of spin down 18 1b|°.



III. A Second L.ook at Spin ,

Saiqi introduced two new states ¥t and y\,

which represent spin up 1n the x-direction

and spin down 1n the x-direction. Then he
proved that these two states can be
expressed 1n the usual z-basis. The results

that he found were
1 1

0| V2 0| V2
V2 V2

It I prepare the quantum state of a spinning particle in the

states ), then measurements of the spin of that particle along

the z-axis will give us spin up and spin down with equal
probabilities of 50%.



III. A Second L.ook at Spin ,

Suppose we prepared the state
1

V2
1

V2

measurement of spin in the y-direction give

) = , then what would a

us? First, what are the possible values?

Compute the eigenvalues of S, and it turns

h
out that they are i;. 'To check Zak’s claim

that these outcomes are equal probability

we first have to express y™ as a superposition of y eigenstates as

7 = C%(FY) + by, then probability of getting spin up in the y

-direction is |a|*, and spin down in the y-direction is | b|°.



IV. Addition of Angular Momentum

We transition back to Dirac notation to describe systems of two
spins. 1'he basic state of such a system 1s

|51 85 my my).

For each of these spins we have again

2
SO s, 5y my my) = s,(s; + DA% |s; 5, my m,)

2
SC sy sy my my) = sy(s, + DA% |5, 5, my m,)

S(l) Sl Sz ml m2> — mlh Sl Sz ml m2>

SO\ s, s, my my) = moh|s; s, my m,).

What 1s the total spin angular momentum ot this system?
S=85D4+5?

Now eigenvalues. The z-component 1sn’t bad

S |5y 8, my my) =S|y s, my my) + SP |5y 5, my my) = h(my +m,)|s; s, my m,)
T'he total angular momentum quantum number s 1s more subtle. It

leads into the story of Clebsch-Gordan coetficients.



