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I. Last time 
*Introduced spin, e.g. algebraically it has the exact same structure as 
orbital angular momentum: . 
*Pauli spin matrices 

, 

the spin operators are then just 

. 

*Found the radial wave functions for the Hydrogen using the power 
series method for solving differential equaitons. 
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II. Series Method for Hydrogen atom

Then the total wave function is  
, 

Where  

, 

Where  is determined by  

 

Also .  

Alternatively we can write these things as 
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II. Hydrogen atom wave functions



II. Hydrogen atom wave functions



III. A Second Look at Spin

Thinking about bases can be subtle. Let’s first consider a classical 
vector (the one purple above). Different choices of  basis lead to 
different expressions for this vector. The turquoise vector represents 
the basis vector , which I can express in the -basis.  

First let’s relate Dirac notation to Matrix notation: 

 or more specifically  (in the z-basis), 

The spin 1/2 particle down is . 

In general, a spin state is a general superposition of  these two states, 
; in this state the probability of  measuring spin 

up is  and that of  spin down is . 
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III. A Second Look at Spin

Saiqi introduced two new states  and , 
which represent spin up in the -direction 
and spin down in the -direction. Then he 
proved that these two states can be 
expressed in the usual -basis. The results 
that he found were  

,     and    .
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If  I prepare the quantum state of  a spinning particle in the 
states , then measurements of  the spin of  that particle along 
the -axis will give us spin up and spin down with equal 
probabilities of  50%. 
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III. A Second Look at Spin

Suppose we prepared the state    

, then what would a 

measurement of  spin in the -direction give 
us? First, what are the possible values? 
Compute the eigenvalues of   and it turns 

out that they are . To check Zak’s claim 

that these outcomes are equal probability
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we first have to express  as a superposition of   eigenstates as 
, then probability of  getting spin up in the 

-direction is , and spin down in the -direction is . 
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IV. Addition of  Angular Momentum

We transition back to Dirac notation to describe systems of  two 
spins. The basic state of  such a system is  

. 
For each of  these spins we have again 

 
 

 
. 

What is the total spin angular momentum of  this system?  
. 

Now eigenvalues. The -component isn’t bad 
 

The total angular momentum quantum number  is more subtle. It 
leads into the story of  Clebsch-Gordan coefficients. 
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