Today

- I. Last Time
- II. Summary of Results on Hydrogen
- III. A Second Look at Spin
- IV. Addition of Angular Momenta
- I. Last time

*Introduced spin, e.g. algebraically it has the exact same structure as orbital angular momentum: $[S_x, S_y] = i\hbar S_z$.

*Pauli spin matrices

$$
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \text{and} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
$$

the spin operators are then just

$$
S_i = \frac{\hbar}{2} \sigma_i.
$$

*Found the radial wave functions for the Hydrogen using the power series method for solving differential equaitons.

II. Series Method for Hydrogen atom

Then the total wave function is
\n
$$
\psi_{n\ell m}(r, \theta, \phi) = R_{n\ell}(r) Y_{\ell}^{m}(\theta, \phi), \qquad E_n = -\left[\frac{m_e}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2\right] \frac{1}{n^2} = \frac{E_1}{n^2}
$$
\nWhere
\n
$$
R_{n\ell}(r) = \frac{1}{r} \rho^{\ell+1} e^{-\rho} v(\rho), \qquad \frac{1}{\lambda} = \mathcal{R} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right), \text{ with}
$$
\nWhere $v(\rho)$ is determined by
\n
$$
c_{j+1} = \frac{2(j+\ell+1-n)}{(j+1)(j+2\ell+2)} c_j.
$$
\n
$$
\mathcal{R} \equiv \frac{m_e}{4\pi c \hbar^3} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 = 1.097 \times 10^7 \text{m}^{-1}
$$
\nAlso $\rho \equiv \frac{r}{an}.$

Alternatively we can write these things as

$$
\psi_{n\ell m} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-\ell-1)!}{2n(n+\ell)!}} e^{-r/na} \left(\frac{2r}{na}\right)^{\ell} \left[L_{n-\ell-1}^{2\ell+1} \left(\frac{2r}{na}\right)\right] Y_{\ell}^m(\theta,\phi)
$$

II. Hydrogen atom wave functions

II. Hydrogen atom wave functions

III. A Second Look at Spin

Thinking about bases can be subtle. Let's first consider a classical vector (the one purple above). Different choices $\partial f|_{\beta}$ as lead to different expressions for this vector. The turquoise **Rector represents** the basis vector \hat{x}' , which I can express in the *xy*-basis. *y*^{\uparrow} *y x*^{*'*}

First let's relate Dirac notation to Matrix notation:

$$
|s m\rangle
$$
 or more specifically $\left|\frac{1}{2}, \frac{1}{2}\right\rangle \equiv |\uparrow\rangle \leftrightarrow \begin{pmatrix} 1\\0 \end{pmatrix}$ (in the z-basis),
The spin 1/2 particle down is $\left|\frac{1}{2}, -\frac{1}{2}\right\rangle \equiv |\downarrow\rangle \leftrightarrow \begin{pmatrix} 0\\1 \end{pmatrix}$.

In general, a spin state is a general superposition of these two states, $\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-,$ in this state the probability of measuring spin up is $|a|^2$ and that of spin down is $|b|^2$. *a* $\binom{a}{b}$ = *a* χ ₊ + *b* χ _−

III. A Second Look at Spin

Saiqi introduced two new states $\chi^{(x)}_+$ and $\chi^{(x)}_-$, which represent spin up in the *x*-direction and spin down in the *x*-direction. Then he proved that these two states can be expressed in the usual *z*-basis. The results that he found were

$$
\chi_{+}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \text{and} \quad \chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}.
$$

If I prepare the quantum state of a spinning particle in the states $\chi_{\pm}^{(x)}$, then measurements of the spin of that particle along the *z*-axis will give us spin up and spin down with equal probabilities of 50%.

III. A Second Look at Spin

Suppose we prepared the state

$$
\chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
$$
, then what would a

measurement of spin in the y-direction give us? First, what are the possible values? Compute the eigenvalues of S_y and it turns out that they are $\pm \frac{\pi}{2}$. To check Zak's claim \hbar 2

that these outcomes are equal probability

we first have to express $\chi^{(x)}_-$ as a superposition of y eigenstates as $\chi^{(x)} = a\chi^{(y)} + b\chi^{(y)}$, then probability of getting spin up in the *y* -direction is $|a|^2$, and spin down in the *y*-direction is $|b|^2$.

IV. Addition of Angular Momentum

We transition back to Dirac notation to describe systems of two spins. The basic state of such a system is

 $|s_1 s_2 m_1 m_2\rangle$. For each of these spins we have again $S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = m_2 \hbar | s_1 s_2 m_1 m_2 \rangle$. What is the total spin angular momentum of this system? $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$. $S^{(1)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_1(s_1 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S^{(2)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_2(s_2 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle = m_1 \hbar | s_1 s_2 m_1 m_2 \rangle$

Now eigenvalues. The *z*-component isn't bad

The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients. $S_z | s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) | s_1 s_2 m_1 m_2 \rangle$