Today

I. Last Time

II. Addition of Angular Momenta

I. Last time

*Two particle system: we introduced basis states $|s_1 s_2 m_1 m_2\rangle$. E.g. . The total z-angular momentum operator was defined by: $S_z = S_z^{(1)} + S_z^{(2)}$, or more generally $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$. Then 1 2 1 2 1 2 1 $\frac{1}{2}$ \rangle = | 1 1 \rangle

$$
S_z | s_1 s_2 m_1 m_2 \rangle = (m_1 + m_2) \hbar | s_1 s_2 m_1 m_2 \rangle.
$$

[Aside: Given the state $|s m\rangle$, the *m* quantum number ranges from $-s$ to *s* in integer steps.]

*A spin that is in a definite state of *z*-angular momentum, is also in a mixed state of *x*-angular momentum. In particular, we showed that a spin up in the *z*-direction particle is an equal mixture of x spins.

III. A Second Look at Spin

Thinking about bases can be subtle. Let's first consider a classical vector (the one purple above). Different choices of basis lead to different expressions for this vector. The turquoise vector represents the basis vector *x*′̂, which I can express in the *xy*-basis. *x y'* \uparrow *y x'* First let's relate Dirac notation to Matrix notation: $|s m\rangle$ or more specifically $\left| \frac{1}{2} \frac{1}{2} \right\rangle \equiv | \uparrow \rangle \longleftrightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (in the z-basis), 2 1 $\frac{1}{2}$ $\rangle \equiv$ | ↑ $\rangle \leftrightarrow$ $\left(\right.$ 1 $0/$

y

The spin 1/2 particle down is
$$
\left| \frac{1}{2} - \frac{1}{2} \right| \equiv |\downarrow\rangle \longleftrightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$
.

In general, a spin state is a general superposition of these two states, $\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-,$ in this state the probability of measuring spin up is $|a|^2$ and that of spin down is $|b|^2$. *a* $\binom{a}{b}$ = *a* χ ₊ + *b* χ _−

III. A Second Look at Spin

Saiqi introduced two new states $\chi^{(x)}_+$ and $\chi^{(x)}_-$, which represent spin up in the *x*-direction and spin down in the *x*-direction. Then he proved that these two states can be expressed in the usual *z*-basis. The results that he found were

$$
\chi_{+}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \text{and} \quad \chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}.
$$

If I prepare the quantum state of a spinning particle in the states $\chi_{\pm}^{(x)}$, then measurements of the spin of that particle along the *z*-axis will give us spin up and spin down with equal probabilities of 50%.

III. A Second Look at Spin

Suppose we prepared the state

$$
\chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}
$$
, then what would a

measurement of spin in the y-direction give us? First, what are the possible values? Compute the eigenvalues of S_y and it turns out that they are $\pm \frac{\pi}{2}$. To check Zak's claim \hbar 2

that these outcomes are equal probability

we first have to express $\chi^{(x)}_-$ as a superposition of y eigenstates as $\chi^{(x)} = a\chi^{(y)} + b\chi^{(y)}$, then probability of getting spin up in the *y* -direction is $|a|^2$, and spin down in the *y*-direction is $|b|^2$.

We transition back to Dirac notation to describe systems of two spins. The basic state of such a system is

 $|s_1 s_2 m_1 m_2\rangle$. For each of these spins we have again $S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = m_2 \hbar | s_1 s_2 m_1 m_2 \rangle$. What is the total spin angular momentum of this system? $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$. $S^{(1)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_1(s_1 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S^{(2)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_2(s_2 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle = m_1 \hbar | s_1 s_2 m_1 m_2 \rangle$

Now eigenvalues. The *z*-component isn't bad

The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients. $S_z | s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) | s_1 s_2 m_1 m_2 \rangle$

 $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$.

Now eigenvalues. The *z*-component isn't bad

The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients. $S_z | s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) | s_1 s_2 m_1 m_2 \rangle$

Let's consider the specific case of two spin $1/2$ particles: $| \uparrow \uparrow \rangle = | \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \rangle$, with $|\uparrow \downarrow \rangle$, with $m = 0$ $|\downarrow \uparrow \rangle$, with $m = 0$ $|\downarrow \downarrow \rangle$, with $m = -1$. 1 2 1 2 1 2 1 $\frac{1}{2}$, with $m = 1$

Where are the $s = 1$ states?

Let's consider the specific case of two spin $1/2$ particles: $|\uparrow \uparrow \rangle = |\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \rangle$, with $|\uparrow \downarrow \rangle$, with $m = 0$ $|\downarrow \uparrow \rangle$, with $m = 0$ $|\downarrow \downarrow \rangle$, with $m = -1$. 1 2 1 2 1 2 1 $\frac{1}{2}$, with $m = 1$

Where are the $s = 1$ states? To answer this, let's try using the lowering operator on the state $|\uparrow\uparrow\,\rangle$. The lowering operator is $S_ - = S_ -^{(1)} + S_ -^{(2)}$, and so we find = \hbar (| ↓ ↑ > + | ↑ ↓ >). Acting S₋ again gives you | ↓ ↓ >. *S*[−]| ↑ \rightarrow = $(S^{(1)}_-\vert \uparrow \rangle$ | ↑ \rangle + | ↑ \rangle $(S^{(2)}_-\vert \uparrow \rangle)$ = $(h \vert \downarrow \rangle)$ | ↑ \rangle + | ↑ \rangle $(h \vert \downarrow \rangle)$

We've just identified a triplet of states
\n
$$
\begin{cases}\n|1 1\rangle = |\uparrow \uparrow \rangle, s = 1 \text{ and } m = 1, \\
|1 0\rangle = \frac{1}{\sqrt{2}}(|\downarrow \uparrow \rangle + |\uparrow \downarrow \rangle), s = 1 \text{ and } m = 0, \\
|1 - 1\rangle = |\downarrow \downarrow \rangle, s = 1 \text{ and } m = -1\n\end{cases}
$$

These are a basis for the states with $|s = 1 m$). We can construct a fourth state by orthogonality:

$$
\frac{1}{\sqrt{2}}(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle).
$$

$$
\frac{1}{2}(\langle \uparrow \downarrow | - \langle \downarrow \uparrow |)(|\downarrow \uparrow \rangle + |\uparrow \downarrow \rangle) = \frac{1}{2}(0 + 1 - 1 - 0) = 0.
$$

This new 'singlet' state is

$$
|0 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle),
$$
 this is the $s = 0$ (singlet)

Handle with care! Here's a classical analog:

 $S^2 |s m\rangle = s(s + 1)\hbar^2 |s m\rangle$

