<u>Today</u>

I. Last Time

II. Addition of Angular Momenta

I. Last time

*Two particle system: we introduced basis states $|s_1 \ s_2 \ m_1 \ m_2 \rangle$. E.g. $\left|\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right\rangle \equiv |\uparrow\uparrow\rangle$. The total z-angular momentum operator was defined by: $S_z = S_z^{(1)} + S_z^{(2)}$, or more generally $\vec{S} = \vec{S}^{(1)} + \vec{S}^{(2)}$. Then

 $S_z | s_1 s_2 m_1 m_2 \rangle = (m_1 + m_2)\hbar | s_1 s_2 m_1 m_2 \rangle.$ [Aside: Given the state $| s m \rangle$, the *m* quantum number ranges from -s to *s* in integer steps.]

*A spin that is in a definite state of z-angular momentum, is also in a mixed state of x-angular momentum. In particular, we showed that a spin up in the z-direction particle is an equal mixture of x spins.

III. A Second Look at Spin

Thinking about bases can be subtle. Let's first consider a classical vector (the one X purple above). Different choices of basis lead to different expressions for this vector. The turquoise vector represents the basis vector \hat{x}' , which I can express in the xy-basis. First let's relate Dirac notation to Matrix notation: $|s m\rangle$ or more specifically $\left|\frac{1}{2}, \frac{1}{2}\right\rangle \equiv |\uparrow\rangle \leftrightarrow \begin{pmatrix} 1\\ 0 \end{pmatrix}$ (in the z-basis), The spin 1/2 particle down is $\left|\frac{1}{2} - \frac{1}{2}\right\rangle \equiv |\downarrow\rangle \leftrightarrow \begin{pmatrix} 0\\ 1 \end{pmatrix}$.

x'

In general, a spin state is a general superposition of these two states, $\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_{+} + b\chi_{-}$; in this state the probability of measuring spin up is $|a|^2$ and that of spin down is $|b|^2$.

III. A Second Look at Spin

Saiqi introduced two new states $\chi_{+}^{(x)}$ and $\chi_{-}^{(x)}$, which represent spin up in the *x*-direction and spin down in the *x*-direction. Then he proved that these two states can be expressed in the usual *z*-basis. The results that he found were

$$\chi_{+}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \text{ and } \chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}.$$

If I prepare the quantum state of a spinning particle in the states $\chi_{\pm}^{(x)}$, then measurements of the spin of that particle along the *z*-axis will give us spin up and spin down with equal probabilities of 50%.

III. A Second Look at Spin

Suppose we prepared the state

$$\chi_{-}^{(x)} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \sqrt{2} \end{pmatrix}, \text{ then what would a}$$

measurement of spin in the y-direction give us? First, what are the possible values? Compute the eigenvalues of S_y and it turns out that they are $\pm \frac{\hbar}{2}$. To check Zak's claim

that these outcomes are equal probability

we first have to express $\chi_{-}^{(x)}$ as a superposition of *y* eigenstates as $\chi_{-}^{(x)} = a\chi_{+}^{(y)} + b\chi_{-}^{(y)}$, then probability of getting spin up in the *y* -direction is $|a|^2$, and spin down in the *y*-direction is $|b|^2$.

We transition back to Dirac notation to describe systems of two spins. The basic state of such a system is

 $|s_{1} s_{2} m_{1} m_{2}\rangle.$ For each of these spins we have again $S^{(1)^{2}}|s_{1} s_{2} m_{1} m_{2}\rangle = s_{1}(s_{1} + 1)\hbar^{2}|s_{1} s_{2} m_{1} m_{2}\rangle$ $S^{(2)^{2}}|s_{1} s_{2} m_{1} m_{2}\rangle = s_{2}(s_{2} + 1)\hbar^{2}|s_{1} s_{2} m_{1} m_{2}\rangle$ $S^{(1)}_{z}|s_{1} s_{2} m_{1} m_{2}\rangle = m_{1}\hbar|s_{1} s_{2} m_{1} m_{2}\rangle$ $S^{(2)}_{z}|s_{1} s_{2} m_{1} m_{2}\rangle = m_{2}\hbar|s_{1} s_{2} m_{1} m_{2}\rangle.$ What is the total spin angular momentum of this system? $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}.$

Now eigenvalues. The z-component isn't bad

 $S_z |s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} |s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} |s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) |s_1 s_2 m_1 m_2 \rangle$ The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients.

 $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}.$

Now eigenvalues. The *z*-component isn't bad

 $S_{z}|s_{1} s_{2} m_{1} m_{2}\rangle = S_{z}^{(1)}|s_{1} s_{2} m_{1} m_{2}\rangle + S_{z}^{(2)}|s_{1} s_{2} m_{1} m_{2}\rangle = \hbar(m_{1} + m_{2})|s_{1} s_{2} m_{1} m_{2}\rangle$ The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients.

Let's consider the specific case of two spin 1/2 particles: $|\uparrow\uparrow\rangle = \left|\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right\rangle$, with m = 1 $|\uparrow\downarrow\rangle$, with m = 0 $|\downarrow\uparrow\rangle$, with m = 0 $|\downarrow\downarrow\rangle\rangle$, with m = -1.

Where are the s = 1 states?

Let's consider the specific case of two spin 1/2 particles: $|\uparrow\uparrow\rangle = \left|\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right\rangle$, with m = 1 $|\uparrow\downarrow\rangle$, with m = 0 $|\downarrow\uparrow\rangle$, with m = 0 $|\downarrow\downarrow\rangle\rangle$, with m = -1.

Where are the s = 1 states? To answer this, let's try using the lowering operator on the state $|\uparrow\uparrow\rangle$. The lowering operator is $S_{-} = S_{-}^{(1)} + S_{-}^{(2)}$, and so we find $S_{-}|\uparrow\uparrow\rangle = (S_{-}^{(1)}|\uparrow\rangle)|\uparrow\rangle + |\uparrow\rangle(S_{-}^{(2)}|\uparrow\rangle) = (\hbar|\downarrow\rangle)|\uparrow\rangle + |\uparrow\rangle(\hbar|\downarrow\rangle)$ $= \hbar(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle)$. Acting S_{-} again gives you $|\downarrow\downarrow\rangle$.

We've just identified a triplet of states

$$\begin{cases}
|1 \ 1\rangle = |\uparrow\uparrow\rangle, s = 1 \text{ and } m = 1, \\
|1 \ 0\rangle = \frac{1}{\sqrt{2}}(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle), s = 1 \text{ and } m = 0, \\
|1 \ -1\rangle = |\downarrow\downarrow\rangle, s = 1 \text{ and } m = -1
\end{cases}$$

These are a basis for the states with $|s = 1 m\rangle$. We can construct a fourth state by orthogonality:

$$\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle).$$
$$\frac{1}{2}(\langle\uparrow\downarrow| - \langle\downarrow\uparrow|)(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle) = \frac{1}{2}(0 + 1 - 1 - 0) = 0.$$

This new 'singlet' state is

$$|0 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$
, this is the $s = 0$ (singlet)

Handle with care! Here's a classical analog:

 $S^2 | s m \rangle = s(s+1)\hbar^2 | s m \rangle$

