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I. Last time 
*Two particle system: we introduced basis states . E.g. 

. The total z-angular momentum operator was 

defined by: , or more generally . Then 
. 

[Aside: Given the state , the  quantum number ranges from 
 to  in integer steps. ] 

*A spin that is in a definite state of  -angular momentum, is also in a 
mixed state of  -angular momentum. In particular, we showed that a 
spin up in the -direction particle is an equal mixture of   spins. 
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III. A Second Look at Spin

Thinking about bases can be subtle. Let’s 
first consider a classical vector (the one 
purple above). Different choices of  basis lead 
to different expressions for this vector. The 
turquoise vector represents the basis vector 

, which I can express in the -basis. ̂x′ xy
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First let’s relate Dirac notation to Matrix notation: 

 or more specifically  (in the z-basis), 

The spin 1/2 particle down is . 

In general, a spin state is a general superposition of  these two states, 
; in this state the probability of  measuring spin up 

is  and that of  spin down is . 
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III. A Second Look at Spin

Saiqi introduced two new states  and , 
which represent spin up in the -direction 
and spin down in the -direction. Then he 
proved that these two states can be 
expressed in the usual -basis. The results 
that he found were  

,     and    .
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If  I prepare the quantum state of  a spinning particle in the 
states , then measurements of  the spin of  that particle along 
the -axis will give us spin up and spin down with equal 
probabilities of  50%. 
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III. A Second Look at Spin

Suppose we prepared the state    

, then what would a 

measurement of  spin in the -direction give 
us? First, what are the possible values? 
Compute the eigenvalues of   and it turns 

out that they are . To check Zak’s claim 

that these outcomes are equal probability
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we first have to express  as a superposition of   eigenstates as 
, then probability of  getting spin up in the 

-direction is , and spin down in the -direction is . 
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IV. Addition of  Angular Momentum

We transition back to Dirac notation to describe systems of  two 
spins. The basic state of  such a system is  

. 
For each of  these spins we have again 

 
 

 
. 

What is the total spin angular momentum of  this system?  
. 

Now eigenvalues. The -component isn’t bad 
 

The total angular momentum quantum number  is more subtle. It 
leads into the story of  Clebsch-Gordan coefficients. 
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II. Addition of  Angular Momentum

. 
Now eigenvalues. The -component isn’t bad 

 
The total angular momentum quantum number  is more subtle. It 
leads into the story of  Clebsch-Gordan coefficients.  

Let’s consider the specific case of  two spin 1/2 particles:  

,  with  
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, with .  

Where are the  states? 
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II. Addition of  Angular Momentum

Let’s consider the specific case of  two spin 1/2 particles:  

,  with  

, with  
, with  
, with .  

Where are the  states? To answer this, let’s try using the 
lowering operator on the state . The lowering operator is  

, and so we find 
 

. Acting  again gives you . 
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II. Addition of  Angular Momentum

We’ve just identified a triplet of  states 

 

These are a basis for the states with . We can construct a 
fourth state by orthogonality: 
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II. Addition of  Angular Momentum

Handle with care! Here’s a classical analog: 

S2 |s m⟩ = s(s + 1)ℏ2 |s m⟩


