Today

- I. Last Time
- II. Last words on Addition of Angular Momenta
- III. Zak's Guest Lecture on Two Particle Systems
- IV. Spatial and Spin Wave Functions
- I. Last time
- * Studied the ways in which we could achieve $s = 1$ by combining two spin 1/2 particles. This gives the triplet $|1 m\rangle = \frac{1}{\sqrt{2}}(|1 \uparrow \downarrow \rangle + |\downarrow \uparrow \rangle),$ gives $m = 0$, $|\uparrow \uparrow \rangle$, gives $m = 1$ 1 2 $(| \uparrow \downarrow \rangle + | \downarrow \uparrow \rangle),$ gives $m = 0$ | ↓ ↓ ⟩, gives *m* − 1

We also found the singlet state

$$
|0\ 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\,\rangle - |\downarrow\uparrow\,\rangle)
$$

We transition back to Dirac notation to describe systems of two spins. The basic state of such a system is

 $|s_1 s_2 m_1 m_2\rangle$. For each of these spins we have again $S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = m_2 \hbar | s_1 s_2 m_1 m_2 \rangle$. What is the total spin angular momentum of this system? $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$. $S^{(1)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_1(s_1 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S^{(2)^2}$ |*s*₁ *s*₂ *m*₁ *m*₂ $\rangle = s_2(s_2 + 1)\hbar^2$ |*s*₁ *s*₂ *m*₁ *m*₂ \rangle $S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle = m_1 \hbar | s_1 s_2 m_1 m_2 \rangle$

Now eigenvalues. The *z*-component isn't bad

The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients. $S_z | s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) | s_1 s_2 m_1 m_2 \rangle$

 $\overrightarrow{S} = \overrightarrow{S}^{(1)} + \overrightarrow{S}^{(2)}$.

Now eigenvalues. The *z*-component isn't bad

The total angular momentum quantum number *s* is more subtle. It leads into the story of Clebsch-Gordan coefficients. $S_z | s_1 s_2 m_1 m_2 \rangle = S_z^{(1)} | s_1 s_2 m_1 m_2 \rangle + S_z^{(2)} | s_1 s_2 m_1 m_2 \rangle = \hbar (m_1 + m_2) | s_1 s_2 m_1 m_2 \rangle$

Let's consider the specific case of two spin $1/2$ particles: $| \uparrow \uparrow \rangle = | \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \rangle$, with $|\uparrow \downarrow \rangle$, with $m = 0$ $|\downarrow \uparrow \rangle$, with $m = 0$ $|\downarrow \downarrow \rangle$, with $m = -1$. 1 2 1 2 1 2 1 $\frac{1}{2}$, with $m = 1$

Where are the $s = 1$ states?

Let's consider the specific case of two spin $1/2$ particles: $|\uparrow \uparrow \rangle = |\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \rangle$, with $|\uparrow \downarrow \rangle$, with $m = 0$ $|\downarrow \uparrow \rangle$, with $m = 0$ $|\downarrow \downarrow \rangle$, with $m = -1$. 1 2 1 2 1 2 1 $\frac{1}{2}$, with $m = 1$

Where are the $s = 1$ states? To answer this, let's try using the lowering operator on the state $|\uparrow\uparrow\,\rangle$. The lowering operator is $S_ - = S_ -^{(1)} + S_ -^{(2)}$, and so we find = \hbar (| ↓ ↑ > + | ↑ ↓ >). Acting S₋ again gives you | ↓ ↓ >. *S*[−]| ↑ \rightarrow = $(S^{(1)}_-\vert \uparrow \rangle$ | ↑ \rangle + | ↑ \rangle $(S^{(2)}_-\vert \uparrow \rangle)$ = $(h \vert \downarrow \rangle)$ | ↑ \rangle + | ↑ \rangle $(h \vert \downarrow \rangle)$

We've just identified a triplet of states
\n
$$
\begin{cases}\n|1 1\rangle = |\uparrow \uparrow \rangle, s = 1 \text{ and } m = 1, \\
|1 0\rangle = \frac{1}{\sqrt{2}}(|\downarrow \uparrow \rangle + |\uparrow \downarrow \rangle), s = 1 \text{ and } m = 0, \\
|1 - 1\rangle = |\downarrow \downarrow \rangle, s = 1 \text{ and } m = -1\n\end{cases}
$$

These are a basis for the states with $|s = 1 m$). We can construct a fourth state by orthogonality:

$$
\frac{1}{\sqrt{2}}(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle).
$$

$$
\frac{1}{2}(\langle \uparrow \downarrow | - \langle \downarrow \uparrow |)(|\downarrow \uparrow \rangle + |\uparrow \downarrow \rangle) = \frac{1}{2}(0 + 1 - 1 - 0) = 0.
$$

This new 'singlet' state is

$$
|0 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow \downarrow \rangle - |\downarrow \uparrow \rangle),
$$
 this is the $s = 0$ (singlet)

Handle with care! Here's a classical analog:

 $S^2 |s m\rangle = s(s + 1)\hbar^2 |s m\rangle$

II. Final words on Addition of Angular Momentum

Suppose we now wanted to add up two general spins s_1 and s_2 , what possible results would we get? The strategy, which we won't carry out, is the same as in our example from last time: you pick the highest spin state and act lowering operators to construct all the intermediate states. The result is that you can get any spin in the following list:

$$
s \in \{s_1 + s_2, s_1 + s_2 - 1, s_1 + s_2 - 2, \dots, |s_1 - s_2| \}.
$$

In fact, this holds for the addition of any two angular momenta, $j \in \{s + \ell, s + \ell - 1, \ldots, |\ell - s| \}.$

This is all summarized in so-called Clebsch-Gordan coefficients: $|s m\rangle = \sum C_{m_1 m_2 m}^{s_1 s_2 s} |s_1 s_2 m_1 m_2\rangle$ $m_1 + m_2 = m$

II. Final words on Addition of Angular Momentum

This is all summarized in so-called Clebsch-Gordan coefficients:

$$
|s m\rangle = \sum_{m_1+m_2=m} C_{m_1m_2m}^{s_1s_2s} |s_1 s_2 m_1 m_2\rangle.
$$

Here's a small section of such a table

As an example, consider the state $|3\>0\rangle$ and ask how we make it out of two spins with $s_1 = 2$ and $s_2 = 1$.

II. Final words on Addition of Angular Momentum

$$
|s m\rangle = \sum C_{m_1m_2m}^{s_1s_2s} |s_1 s_2 m_1 m_2\rangle.
$$

 $m_1 + m_2 = m$

$$
|3 0\rangle = C_1 |2 1\rangle |1 - 1\rangle + C_2 |2 0\rangle |10\rangle + C_3 |2 - 1\rangle |1 1\rangle
$$

= $\frac{1}{\sqrt{5}} |2 1\rangle |1 - 1\rangle + \sqrt{\frac{3}{5}} |2 0\rangle |10\rangle + \frac{1}{\sqrt{5}} |2 - 1\rangle |1 1\rangle$