
I. Last Time 
II. Two Particle Wave Functions in General 
III. Atoms: a beginning…

Today

I. Last time 
* Zak’s guest lecture on two particle systems. Symmetrized wave 

functions describe bosons and anti-symmetrize wave functions 
describe fermions. The symmetry is with respect to the exchange 
of  the two particles. This requirement only arises because 
quantum mechanics allows for completely identical particles.  

* Studied the combination of  two angular momenta in general , 
and in particular, learned to use Clebsch-Gordan tables. 



I. Addition of  Angular Momentum

We’ve just identified a triplet of  states 

 

These are a basis for the states with . We can construct a 
fourth state by orthogonality: 

.  

. 

This new ‘singlet’ state is 

, this is the  (singlet)

|1 1⟩ = | ↑ ↑ ⟩, s = 1 and m = 1,

|1 0⟩ = 1

2
( | ↓ ↑ ⟩ + | ↑ ↓ ⟩), s = 1 and m = 0,

|1 − 1⟩ = | ↓ ↓ ⟩, s = 1 and m = − 1

|s = 1 m⟩

1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)

1
2

(⟨ ↑ ↓ | − ⟨ ↓ ↑ | )( | ↓ ↑ ⟩ + | ↑ ↓ ⟩) =
1
2

(0 + 1 − 1 − 0) = 0

|0 0⟩ =
1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩) s = 0



I. Final words on Addition of  Angular Momentum

Suppose we now wanted to add up two general spins  and , what 
possible results would we get? The strategy, which we won’t carry 
out, is the same as in our example from last time: you pick the 
highest spin state and act lowering operators to construct all the 
intermediate states. The result is that you can get any spin in the 
following list: 

.  
In fact, this holds for the addition of  any two angular momenta, 

. 

This is all summarized in so-called Clebsch-Gordan coefficients: 

s1 s2

s ∈ {s1 + s2, s1 + s2 − 1,s1 + s2 − 2,…, |s1 − s2 |}

j ∈ {s + ℓ, s + ℓ − 1,…, |ℓ − s |}

|s m⟩ = ∑
m1+m2=m

Cs1s2s
m1m2m |s1 s2 m1 m2⟩



I. Final words on Addition of  Angular Momentum

This is all summarized in so-called Clebsch-Gordan coefficients: 
. 

Here’s a small section of  such a table

|s m⟩ = ∑
m1+m2=m

Cs1s2s
m1m2m |s1 s2 m1 m2⟩

As an example, consider the state  and ask how we make it out 
of  two spins with  and . 

|3 0⟩
s1 = 2 s2 = 1



I. Final words on Addition of  Angular Momentum

.|s m⟩ = ∑
m1+m2=m

Cs1s2s
m1m2m |s1 s2 m1 m2⟩

 

 

|3 0⟩ = C1 |2 1⟩ |1 − 1⟩ + C2 |2 0⟩ |10⟩ + C3 |2 − 1⟩ |1 1⟩

=
1

5
|2 1⟩ |1 − 1⟩ +

3
5

|2 0⟩ |10⟩ +
1

5
|2 − 1⟩ |1 1⟩



II. Two particle wave functions in general

The complete state of  an electron puts together both the spatial 
dependence and the spin of  the electron: 

. 
What happens when we put two particles together?  

.  
The symmetrization (or anti-sym.) axiom of  quantum mechanics 
says that it is the whole wave function that has a definite symmetry 
type; e.g., for a fermion 

.  
This means that we have to consider the full wave function when we 
are thinking about symmetrization.  

The Pauli exclusion principle states that two fermions (e.g. electrons) 
cannot occupy the same state. 

ψ( ⃗r )χ

ψ( ⃗r1, ⃗r2)χ(1,2)

ψ( ⃗r1, ⃗r2)χ(1,2) = − ψ( ⃗r2, ⃗r1)χ(2,1)



II. Two particle wave functions in general
The Pauli exclusion principle states that two fermions (e.g. electrons) 
cannot occupy the same state.  

I can put two electrons in the same spatial wave function as long as I 
also require that the spin state is the singlet spin state!  

We can formalize all of  this mathematically. The idea is to 
introduce a new operator, called the exchange operator and 
denoted . The definition of  this operator is that it interchanges two 
particles 

.  
This operator has a neat property , as a matrix this is the unit 
matrix with ones along the diagonal. This means that the 
eigenvalues of   itself  are . Suppose we had two identical 
particles…

̂P

̂P | (1,2)⟩ = | (2,1)⟩
̂P2 = 1

̂P ±1



II. Two particle wave functions in general

This means that the eigenvalues of   itself  are . Suppose we had 
two identical particles…, then the Hamiltonian should treat them 
exactly the same  and , but then  

 
and hence are compatible observables. From the generalized 
Ehrenfest result we then have that  

 

Any pair of  particles that start out in a symmetrized state remain in 
that state for all time.  

The symmetrization axiom states that not only do identical 
particles maintain their symmetrization, but they are required to be 
in such a state: . 

̂P ±1

m1 = m2 V( ⃗r1, ⃗r2) = V( ⃗r2, ⃗r1)
[ ̂P, Ĥ] = 0

d⟨ ̂P⟩
dt

= 0!

| (1,2)⟩ = ± | (2,1)⟩



II. Two particle wave functions in general

The symmetrization axiom states that not only do identical 
particles maintain their symmetrization, but they are required to be 
in such a state: .  

This is also true for  identical particles, they generally satisfy 
.  

III. Atoms 

All we’ll do today is to write down the Hamiltonian and look at it.: 

| (1,2)⟩ = ± | (2,1)⟩

n
| (1,2,…, i, …, j, …, n⟩ = ± | (1,2,…, j, …, i, …, n⟩

Ĥ =
Z

∑
j=1

−
ℏ2

2m
∇2

j − ( 1
4πϵ0 ) Ze2

rj
+

1
2 ( 1

4πϵ0 )
Z

∑
j≠k

e2

| ⃗rj − ⃗rk |


