
I. Last Time 
II. Your Questions

Today: Quantum Review Session

I. Last time 
* Generalized two-particle states 

.  
*Studied the symmetrization axiom in general 

, 
where anti-symmetry applies to fermions and symmetry to bosons.  
*We also introduced an exchange operator , which has the action 

. 
We found that this operator has eigenvalues . This operator 
commutes with the Hamiltonian, hence is time-independent, and so 
if  you start in a definite symmetry state you remain in such a state.

ψ( ⃗r1, ⃗r2)χ(1,2)

ψ( ⃗r1, ⃗r2)χ(1,2) = ± ψ( ⃗r2, ⃗r1)χ(2,1)

̂P12
̂P12 | (1,2)⟩ = | (2,1)⟩

±1



I. Two particle wave functions in general

The complete state of  an electron puts together both the spatial 
dependence and the spin of  the electron: 

. 
What happens when we put two particles together?  

.  
The symmetrization (or anti-sym.) axiom of  quantum mechanics 
says that it is the whole wave function that has a definite symmetry 
type; e.g., for a fermion 

.  
This means that we have to consider the full wave function when we 
are thinking about symmetrization.  

The Pauli exclusion principle states that two fermions (e.g. electrons) 
cannot occupy the same state. 

ψ( ⃗r )χ

ψ( ⃗r1, ⃗r2)χ(1,2)

ψ( ⃗r1, ⃗r2)χ(1,2) = − ψ( ⃗r2, ⃗r1)χ(2,1)



I. Two particle wave functions in general
The Pauli exclusion principle states that two fermions (e.g. electrons) 
cannot occupy the same state.  

I can put two electrons in the same spatial wave function as long as I 
also require that the spin state is the singlet spin state!  

We can formalize all of  this mathematically. The idea is to 
introduce a new operator, called the exchange operator and 
denoted . The definition of  this operator is that it interchanges two 
particles 

.  
This operator has a neat property , as a matrix this is the unit 
matrix with ones along the diagonal. This means that the 
eigenvalues of   itself  are . Suppose we had two identical 
particles…

̂P

̂P | (1,2)⟩ = | (2,1)⟩
̂P2 = 1

̂P ±1



I. Two particle wave functions in general

This means that the eigenvalues of   itself  are . Suppose we had 
two identical particles…, then the Hamiltonian should treat them 
exactly the same  and , but then  

 
and hence are compatible observables. From the generalized 
Ehrenfest result we then have that  

 

Any pair of  particles that start out in a symmetrized state remain in 
that state for all time.  

The symmetrization axiom states that not only do identical 
particles maintain their symmetrization, but they are required to be 
in such a state: . 

̂P ±1

m1 = m2 V( ⃗r1, ⃗r2) = V( ⃗r2, ⃗r1)
[ ̂P, Ĥ] = 0

d⟨ ̂P⟩
dt

= 0!

| (1,2)⟩ = ± | (2,1)⟩



I. Two particle wave functions in general

The symmetrization axiom states that not only do identical 
particles maintain their symmetrization, but they are required to be 
in such a state: .  

This is also true for  identical particles, they generally satisfy 
.  

I. Atoms 

All we’ll do today is to write down the Hamiltonian and look at it.: 

| (1,2)⟩ = ± | (2,1)⟩

n
| (1,2,…, i, …, j, …, n⟩ = ± | (1,2,…, j, …, i, …, n⟩

Ĥ =
Z

∑
j=1

−
ℏ2

2m
∇2

j − ( 1
4πϵ0 ) Ze2

rj
+

1
2 ( 1

4πϵ0 )
Z

∑
j≠k

e2

| ⃗rj − ⃗rk |



II. How can I think of  more than one particle wave functions?

The mathematical answer is a tensor product. How can I put two 
vector spaces together? There’s more than one answer.  

The first kind of  way is called a Cartesian product (physicists usually 
denote it with  and mathematicians with . Given two vector 
spaces  and , with dimensions  and . The 
Cartesian product just adds these two vector spaces together to get 

, 
notice that  has dimension , which is why 
mathematicians refer to a direct sum. One more way of  thinking 
about this to say that I have added another slot to my vector 

.  

× ⊕
V1 V2 dim V1 = 1 dim V2 = 2

V3 = V1 × V2

V3 dim V3 = 3

( *
* ) → (

*
*
* )



II. How can I think of  more than one particle wave functions?

The tensor product of  two vectors spaces is a new vector space that 
has dimension equal to the product of  the dimensions of  the spaces 
that it is made out of. Given  and  of  dimensions 2 and three, 
their tensor product is 

 
and is 6 dimensional. 

Angular momentum theory 
. 

There are *not* simultaneous eigenfunctions of  all three 
components! We choose to focus on  

.  
There is a second observable that commutes with , namely , 

.

V2 V3

V = V2 ⊗ V3

[Lx, Ly] = iℏLz

Lz

LzYm
ℓ (θ, ϕ) = mℏYm

ℓ

Lz L2

L2Ym
ℓ = ℓ(ℓ + 1)ℏ2Ym

ℓ



II. Angular momentum theory

Angular momentum theory 
. 

There are *not* simultaneous eigenfunctions of  all three 
components! We choose to focus on  

.  
There is a second observable that commutes with , namely , 

. 
The functional form of  the  was 

, here  and 

[Lx, Ly] = iℏLz

Lz

LzYm
ℓ (θ, ϕ) = mℏYm

ℓ

Lz L2

L2Ym
ℓ = ℓ(ℓ + 1)ℏ2Ym

ℓ

Ym
ℓ

Ym
ℓ (θ, ϕ) = NPm

ℓ (cos θ)eimϕ ℓ = 0,1,2,3,…
m = − ℓ, − ℓ + 1,…, ℓ .



II. G&S Problem 4.47

The Hamiltonian is  

  (isotropic oscillator). 

Working in spherical coordinates 
. 

The radial wave equation is  

, 

where . This is the equation we want to solve. We can 
attempt a power series solution. First make it homogeneous, next 
find unites variables to make as clean as possible, finally strip off  the 
asymptotic behavior. This would allow us to write .

Ĥ(r, θ, ϕ) = −
ℏ2

2m
∇2 +

1
2

mω2r2

ψnℓm(r, θ, ϕ) = Rnℓ(r)Ym
ℓ (θ, ϕ)

−
ℏ2

2m
d2u
dr2

+ [ 1
2

mω2r2 +
ℏ2

2m
ℓ(ℓ + 1)

r2 ] u = Eu

u = rR(r)

u(r) = fa1 fa2v(r)



II. G&S Problem 4.47

 
 

 

|ℓs1mm1⟩ = ∑ C | jmj⟩

ψabc

sin ( πx1

a ) sin ( 2πx2

a )


