
I. Last Monday 
II. Identical Fermions and the Structure of  the Periodic Table

Today:

I. Last time 
* Symmetrization in general. Defined the exchange operator and 

found that it had eigenvalues , and also found that commuted 
with the Hamiltonian, hence symmetrized and anti-symmetrize 
states are preserved under time evolution.  

* We also introduced the  particle Hamiltonian for  electrons in 
Coulomb interaction with a atomic number  nucleus and with 
each other…
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I. Two particle wave functions in general

The complete state of  an electron puts together both the spatial 
dependence and the spin of  the electron: 

. 
What happens when we put two particles together?  

.  
The symmetrization (or anti-sym.) axiom of  quantum mechanics 
says that it is the whole wave function that has a definite symmetry 
type; e.g., for a fermion 

.  
This means that we have to consider the full wave function when we 
are thinking about symmetrization.  

The Pauli exclusion principle states that two fermions (e.g. electrons) 
cannot occupy the same state. 

ψ( ⃗r )χ

ψ( ⃗r1, ⃗r2)χ(1,2)

ψ( ⃗r1, ⃗r2)χ(1,2) = − ψ( ⃗r2, ⃗r1)χ(2,1)



I. Two particle wave functions in general

The symmetrization axiom states that not only do identical 
particles maintain their symmetrization, but they are required to be 
in such a state: .  

This is also true for  identical particles, they generally satisfy 
.  

I. Atoms 

All we’ll do today is to write down the Hamiltonian and look at it.: 

| (1,2)⟩ = ± | (2,1)⟩

n
| (1,2,…, i, …, j, …, n⟩ = ± | (1,2,…, j, …, i, …, n⟩

Ĥ =
Z

∑
j=1

−
ℏ2

2m
∇2

j − ( 1
4πϵ0 ) Ze2

rj
+

1
2 ( 1

4πϵ0 )
Z

∑
j≠k

e2

| ⃗rj − ⃗rk |



II. Identical Fermions and the Structure of  the Periodic Table

Today we’re going to study what we can say about the periodic table 
by looking at the truncated Hamiltonian 

. 

This leas us to treat each of  the electrons as if  it were in a hydrogen 
state wave function , where  tells us the energy of  the state,  
the orbital angular momentum, and  the -component of  the 
orbital angular momentum. This is a decent approximation. We 
combine this with the spin state of  the electrons; we will treat the 
electrons two at time, because Pauli exclusion says that the electrons 
can’t occupy the same total state, but they can occupy the same 
spatial state as long as they have different spin states. This leads us 
back to the two particle spin states… 

Ĥ =
Z

∑
j=1

−
ℏ2

2m
∇2

j − ( 1
4πϵ0 ) Ze2

rj

ψnℓm n ℓ
m z



II. Identical Fermions and the Structure of  the Periodic Table

This leads us back to the two particle spin states… 

,      singlet state 

and  

,   triplet states.  

When the electrons are in the singlet state we call it bonding and in 
the triplet state it’s anti-bonding. The hydrogenic wave functions are 
called orbitals. And their sermonic nature forces us to fill orbitals in 
an interesting way. What is the degeneracy of  a fixed energy level ? 

.

|0 0⟩ =
1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)

|1 m⟩ =

| ↑ ↑ ⟩, m = 1
1

2
( | ↑ ↓ ⟩ + | ↓ ↑ ⟩), m = 0

| ↓ ↓ ⟩, m = − 1

n
n−1

∑
ℓ=0

ℓ

∑
m=−ℓ

1 =
n−1

∑
ℓ=0

(2ℓ + 1) = 2
(n − 1)n

2
+ n = n2



II. Identical Fermions and the Structure of  the Periodic Table
What is the degeneracy of  a fixed energy level ? 

. 

Each of  these levels can accept two electrons (we often say one spin 
and one spin down, but that’s not really true) in a singlet state. So 
each shell has  

 

Nomenclature: 

n
n−1

∑
ℓ=0

ℓ

∑
m=−ℓ

1 =
n−1

∑
ℓ=0

(2ℓ + 1) = 2
(n − 1)n

2
+ n = n2

n = 1 2 elecs.
n = 2 8 elecs.
n = 3 18 elecs.…
n 2n2 elecs.

ℓ = 0 "s" for sharp
ℓ = 1 "p" for principle
ℓ = 2 "d" for diffuse
ℓ = 3 "f" for fundamental
from there they go alphabetically



II. Identical Fermions and the Structure of  the Periodic Table

Nomenclature: 

``Supid foo’. ” 

As we noticed the rows of  the periodic table don’t perfectly 
correspond to the shells ( ). A rule of  thumb for filling the orbitals is 
the so-called Aufbau principle 

 

The 1s state can accept two electrons and we write .

ℓ = 0 "s" for sharp
ℓ = 1 "p" for principle
ℓ = 2 "d" for diffuse
ℓ = 3 "f" for fundamental
from there they go alphabetically (you skip j)

n

…
4s 4p 4d 4f
3s 3p 3d
2s 2p
1s

He = (1s)2



II. Identical Fermions and the Structure of  the Periodic Table

The 1s state can accept two electrons and we write . Let’s 
do Carbon, . How about Neon? 

. What about Calcium? . If  we 
wanted to keep studying this structure in more detail we would go 
towards Hund’s rules, which tell us the lowest energy way to fill the 
shells with electrons. There is another piece of  spectroscopic 
notation that you should study before taking the Physics GRE: 

. 

Further structure of  periodic table: 0 
Entanglement (in general: 3, EPR paradox: 3) 
Density Matrices: 2

He = (1s)2

C = (1s)2(2s)2(2p)2

Ne = He(2s)2(2p)6 Ca = Ar(4s)2

2S+1LJ



II. G&S Problem 4.47

The Hamiltonian is  

  (isotropic oscillator). 

Working in spherical coordinates 
. 

The radial wave equation is  

, 

where . This is the equation we want to solve. We can 
attempt a power series solution. First make it homogeneous, next 
find unitless variables to make as clean as possible, finally strip off  
the asymptotic behavior. This would allow us to write 

.

Ĥ(r, θ, ϕ) = −
ℏ2

2m
∇2 +

1
2

mω2r2

ψnℓm(r, θ, ϕ) = Rnℓ(r)Ym
ℓ (θ, ϕ)

−
ℏ2

2m
d2u
dr2

+ [ 1
2

mω2r2 +
ℏ2

2m
ℓ(ℓ + 1)

r2 ] u = Eu

u = rR(r)

u(r) = fa1 fa2v(r)



II. G&S Problem 4.47

 

Unitless variables:  and . The 

chain rule gives 

, 

, 

So finally 

−
ℏ2

2m
d2u
dr2

+ [ 1
2

mω2r2 +
ℏ2

2m
ℓ(ℓ + 1)

r2
− E] u = 0

ξ =
mω
ℏ

r =
mω2r2

ωℏ
r2 =

ℏ
mω

ξ2

du
dr

=
du
dξ

dξ
dr

=
mω
ℏ

du
dξ

d2u
dr2

=
mω
ℏ

d2u
dξ2

−
ℏ2

2m
mω
ℏ

d2u
dξ2

+
1
2

mω2 ℏ
mω

ξ2 +
ℏ2

2m
ℓ(ℓ + 1)

ℏ
mω ξ2

− E u = 0



II. G&S Problem 4.47
So finally 

 where . We’re going to 

try and use the power series method of  solution. To find the 
asymptotic behavior we consider the limits  and . In the 

 case 

   with solution . In the other limit we have  

 with solution . Now we’ve found the asymptotic 

behavior and can write . Good exercise 

. What’s next? Guess 

that  has the form . Next compute derivatives of… 

−
d2u
dξ2

+ [ξ2 +
ℓ(ℓ + 1)

ξ2
− K] u = 0, K =

2E
ℏω

ξ → 0 ξ → ∞
ξ → 0
d2u
dξ2

=
ℓ(ℓ + 1)

ξ2
u, u ∼ ξℓ+1

d2u
dξ2

= ξ2u, u ∼ e−ξ2/2

u(ξ) = ξℓ+1e−ξ2/2v(ξ)
d2v
dξ2

+ 2
dv
dξ ( ℓ + 1

ξ
− ξ) + (K − 2ℓ − 3)v = 0

v(ξ) v(ξ) =
∞

∑
j=0

ajξj



II. G&S Problem 4.47
Good exercise 

. What’s next? Guess 

that  has the form . Next compute derivatives of  :  

   and Then our equation 

becomes 

 

Or upon re-indexing 
 

To make my indexing of  the 2nd sum correct, I force .  

d2v
dξ2

+ 2
dv
dξ ( ℓ + 1

ξ
− ξ) + (K − 2ℓ − 3)v = 0

v(ξ) v(ξ) =
∞

∑
j=0

ajξj v

v′ =
∞

∑
j=0

jajξj−1 v′ ′ =
∞

∑
j=0

j( j − 1)ajξj−2 .

∞

∑
j=0

j( j − 1)ajξj−2 + 2(ℓ + 1)
∞

∑
j=0

jajξj−2 − 2
∞

∑
j=0

jajξj + (K − 2ℓ − 3)
∞

∑
j=0

ajξj = 0

∞

∑
j=0

( j + 2)( j + 1)aj+2ξj + 2(ℓ + 1)
∞

∑
j=0

( j + 2)aj+2ξj − 2
∞

∑
j=0

jajξj + (K − 2ℓ − 3)
∞

∑
j=0

ajξj = 0

a1 = 0


