
Physics 327, Spring 2016 General Relativity Hal M. Haggard

Homework 11
Due Friday, May 6th at 5pm

Read Chapter 21 of Hartle’s Gravity.

1. Null Geodesics with Nonaffine Parametrization As we showed in class (see also Hartle’s section
8.3), when the tangent vector to a null geodesic u is parametrized with an affine parameter
λ, it obeys the geodesic equation

∇uu = 0.

Show that even if a nonaffine parameter is used,

∇uu = −κu

for some function κ of the parameter λ.

2. Suiface Gravity of a Black Hole In the geometry of a spherical black hole, the Killing vector
ξ = ∂/∂t corresponding to time translation invariance is tangent to the null geodesics that
generate the horizon. From the last problem you know that this means

∇ξξ = −κξ

for a constant of proportionally κ, which is called the surface gravity of the black hole. Eval-
uate this relation to find the value of κ for a Schwarzschild black hole in terms of its mass, M .
Be sure to use a coordinate system that is nonsingular on the horizon such as the Eddington-
Finkelstein coordinates discussed in class (Hartle’s Section 12.1). If you attended the guest
lecture that I gave in Paul’s class then you may find it interesting that the temperature of a
black hole is really derived in terms of this surface gravity. So, this quantity plays a central
role in black hole thermodynamics.

3. Killing’s equation In class (see also Hartle’s section 8.2) a Killing vector corresponding to a
symmetry of a metric was defined in a coordinate system in which the metric was independent
of one coordinate, x1. The components of the corresponding Killing vector ξ are then

ξα = (0, 1, 0, 0).

By explicit calculation show that

∇αξβ +∇βξα = 0.

This is Killing’s equation. It is a general characterization of Killing vectors in the sense that
any solution corresponds to a symmetry of the metric.

4. Physical approach to curvature The curvature formula that we derived in class assumed that
the curve was parametrized by arc length. This is particularly elegant, but, unfortunately, it
can be difficult to find the arc length analytically for many curves. So, it is useful to derive
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a formula for the curvature using any parametrization. We will take a physical approach to
this derivation.

The acceleration can be decomposed into a part that is along the curve, the longitudinal
acceleration, and a part that is perpendicular to the curve. The latter part, which physicists
call the centripetal acceleration, is closely related to the curvature. We have

~a = acn̂+ al t̂,

where ac is the centripetal acceleration, al is the longitudinal acceleration, n̂ is the unit vector
normal to the curve, and t̂ is the unit tangent vector to the curve.

(a) Suppose you are given a curve (x(t), y(t)) parametrized by time. Find the normalized
tangent t̂ to this curve.

(b) Using the expression from (a) find the unit normal vector to the curve, n̂.

(c) From introductory physics you may know that for a circular trajectory ac = v2/R where
v is the (constant) speed along the curve and R is the radius of the circle. As we discussed
in class, the osculating circle gives you a realization of this acceleration at every point
of the trajectory and hence

~a = v2κn̂+ al t̂,

where κ = 1/R is the curvature of the curve at that point. Find a more general formula
for the curvature of your curve with general parametrization (x(t), y(t)) by first calcu-
lating ~a and then dotting it with your expression for n̂ from the last part and solving
for κ. [Hint: You can derive the acceleration of the curve ~a directly from its definition
as a second derivative.]

(d) Use your new formula from (c) to derive the curvature of a parabola y = x2 and that of
an a ellipse

x2

a2
+
y2

b2
= 1,

at a general point along these curves.

5. In class we claimed that Γαβγ was symmetric in its lower two indices. Let’s prove this. Hartle’s
equation (20.48) gives the expression for the components of the second-rank tensor that results
from covariant differentiation in a local inertial frame where all the Γαβγ ’s vanish. Use the
transformation law for tensors, Hartle’s (20.45), to obtain an expression for the Γαβγ ’s in a
general coordinate system. Use this result to show that Γαβγ is symmetric in β and γ.
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