Practice Problems for Final Exam

0

1. Solve the following equations:

(a)
$$x^2 - 5x + 6 = 0$$

(b) $x^2 = 12 - x$
(c) $(x^2 - 4)(2x - 3) = 0$
(d) $x^3 + 13x^2 + 42x = 0$
(e) $\frac{1}{x} + \frac{3}{x^2} = 0$
(f) $\frac{x}{x+5} - \frac{1}{x-3} = 0$
(g) $3\sqrt{x} - 2 = \sqrt{x} + 6$
(h) $(\sqrt{x} - 1)^2 = x - 5$
(i) $x^{-2} = 4$
(j) $x^{2/3} = 16$
(k) $x^{-1/2} = \frac{1}{3}$
(l) $\frac{32}{\sqrt{x}} = \sqrt[3]{x}$

2. Simplify by combining the fractions:

(a)
$$\frac{1}{x} + \frac{x}{x+2}$$

(b) $\frac{1}{x-3} + \frac{1}{(x-3)(x+2)}$

3. Simplify the following expressions:

(a)
$$\frac{\frac{1}{x} - \frac{2}{y}}{z}$$
 (b) $\frac{z}{\frac{3}{x} + \frac{1}{x^2}}$

4. Rationalize the denominators of the following fractions:

(a)
$$\frac{2}{3-\sqrt{5}}$$
 (b) $\frac{1}{x-\sqrt{y}}$

5. Simplify the following expressions:

(a)
$$x (x^3 y^2)^4$$
 (b) $\sqrt[3]{x^9 y^6}$

(c)
$$\frac{(x^2y^4)^3}{x^{-2}y^5}$$
 (d) $\frac{x^{3/4}}{x^{1/2}}$

6. Find all solutions to the following system of equations:

$$\begin{array}{rcl} x - 2y &=& 7\\ 5x + 3y &=& -4 \end{array}$$

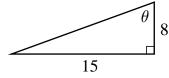
7. Given that b > 0, evaluate the following:

(a)
$$\log_b (b^4)$$
 (b) $\log_b (1)$
(c) $\log_b \left(\sqrt[5]{b}\right)$ (d) $\log_b \left(\frac{1}{\sqrt{b}}\right)$

- 8. Solve the following equations:
 - (a) $2^{3x-4} = 10$ (b) $e^{3x} = 7$
 - (c) $\ln(x-1) = 5$ (d) $\log_2(x) + \log_2(x-4) = 5$ 3

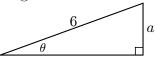
(e)
$$\frac{5}{5-2e^{-x}} = 4$$
 (f) $e^{2x} - 7e^x + 10 = 0$

9. Let $f(x) = 3x + \frac{1}{x}$ and $g(x) = \sqrt{x}$. (a) What is f(g(x))?

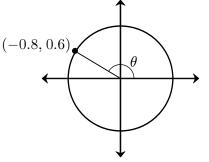

$$e^{2x} - 7e^x + 10 = 0$$

(b) What is g(f(x))?

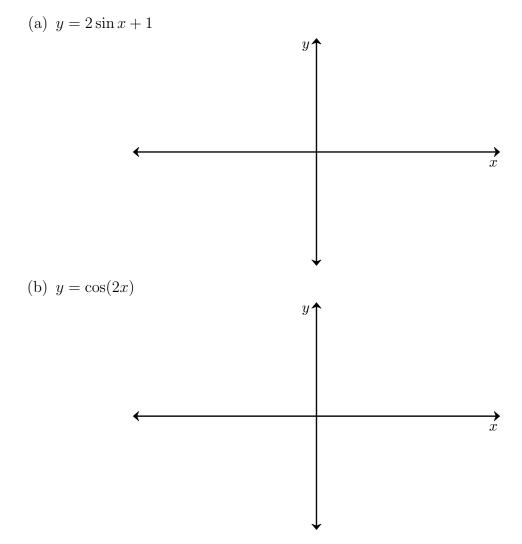
10. Find the equations for the lines through the following points.


- (a) (1, -1) and (3, 5)
- (b) (-1,0) and (-2,5)
- (c) (-1, 5) and (2, 5)
- (d) (-3, 2) and (-3, 5)
- 11. Consider the line 3x + 5y = 2.
 - (a) What is the slope of this line?
 - (b) What is the *y*-intercept of this line?
 - (c) What is the *x*-intercept of this line?

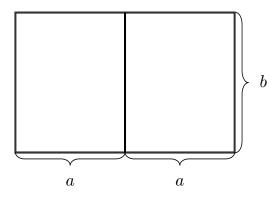
- 12. Convert $\frac{5\pi}{6}$ radians to degrees.
- 13. Convert 150° to radians.
- 14. Consider the following right triangle:


What is $\sin \theta$?

15. Consider the following right triangle:


If $\theta = 25^{\circ}$, what is a?

- 16. Use the Unit Circle to evaluate the following trigonometric functions. Give exact answers.
 - (a) $\sin\left(\frac{\pi}{4}\right)$ (d) $\cos\left(\frac{7\pi}{6}\right)$ (b) $\tan\left(\frac{\pi}{3}\right)$ (e) $\csc\left(\frac{2\pi}{3}\right)$ (c) $\sin\left(\frac{7\pi}{3}\right)$ (f) $\cos\left(\frac{17\pi}{6}\right)$
- 17. The following circle has radius 1 and is centered at the origin:


What is $\tan \theta$?

18. Sketch the graphs of the following functions:

- 19. At age 18, Megan owned 40 books. After age 18, she buys 4 books a year. How many books does she own at age x?
- 20. In 2000, the population of Red Hook was 1805, and in 2002, the population was 1824. Assuming that the population grows linearly, estimate the population of Red Hook in 2008.
- 21. Women born in 1960 have a life expectancy of 73.1 years; women born in 2004 have a life expectancy of 80.4 years. For the following questions, assume that life expectancy is linearly related to year of birth.
 - (a) Find an equation for the life expectancy of a woman born in year x.
 - (b) What would you predict for the life expectancy of a woman born in 2009?

22. A rancher wishes to fence off a rectangular plot of land. The plot will be divided into two equal portions by an additional fence parallel to the two sides:

If the rancher has 9 km of fence, express the area of the region as a function of a.

- 23. At noon a bacteria culture contains 700 bacteria. At 2pm, the culture contains 1000 bacteria.
 - (a) Assuming exponential growth, determine the number of bacteria in the culture at 4:30pm.
 - (b) At what time will the culture contain 2000 bacteria?
- 24. The half-life of plutonium-239 is 25,000 years. A sample initially contains 16 grams of plutonium-239.
 - (a) How much will the sample contain after 40,000 years?
 - (b) When will the sample contain 14 grams of plutonium-239?
- 25. The spread of influenza in a certain city is modeled by the following equation:

$$P = \frac{500,000}{1 + 2499e^{-0.92t}}$$

where P is the number of people who have become ill with the flu t weeks after the initial outbreak.

- (a) How many people have become ill 5 weeks after the initial outbreak?
- (b) When will 100,000 have become ill?