
Differentials

For a while now, we have been using the notation

dy
dx

to mean the derivative of y with respect to x. Here x is any variable, and y is a variable
whose value depends on x.

One of the reasons that we like this notation is that it suggests the meaning of the
derivative. The quantities dx and dy are called differentials, and represent very small
changes in the values of x and y. Specifically, if we change x by a small amount dx, then y
will change by a small amount dy, and the ratio dy/dx is the derivative.

It has been a while since we discussed these ideas. The following example should help
you to remember:

EXAMPLE 1 At a certain instant, the value of x is 3, and the value of y is 5. A short
time later, the value of x has increased to 3.01, and the value of y has increased to 5.04.
Estimate dy/dx.

SOLUTION The small increase in x is

dx = 3.01−3 = 0.01,

and the corresponding increase in y is

dy = 5.04−5 = 0.04.

Therefore
dy
dx
≈ 0.04

0.01
= 4. �

Now, the calculation above isn’t quite right, because it doesn’t really make sense to
write dx = 0.01. The idea of the differential dx is that it’s infinitesimal—infinitely small
but still nonzero. Since 0.01 isn’t infinitesimal, it can’t really be the value of dx.
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However, the calculation above does make sense as an approximation. Even though
0.01 isn’t really infinitesimal, it is very small, so treating it as infinitesimal ought to yield
answers that are approximately right. If we want the approximation to be more accurate,
we would need to use a smaller change in x, such as 0.001 or 0.0001.

We discussed all of these ideas once before. The idea of better and better approxima-
tions leads naturally to the idea of as limit. Indeed, it is possible to define the derivative
entirely using limits:

f ′(x) = lim
h→0

f (x+h)− f (x)
h

.

This modern “limit definition” of the derivative eschews differentials and infinitesimals,
relying instead on the more concrete notion of a limit. Before the limit definition of the
derivative, mathematicians spent a century and a half arguing about the legitimacy of in-
finite and infinitesimal numbers, and the legitimacy of calculus itself. The limit definition
puts those objections to rest, and provides a solid foundation for modern calculus.

However, the idea of infinitesimal numbers remains. Though calculus is now based
on limits, many problems are most easily solved using infinitesimals, and reasoning using
infinitesimals can be a very powerful technique. Ultimately, such reasoning needs to be
justified using limits, but in practice infinitesimals are often easier to understand and easier
to use.

Equations Involving Differentials

A differential is a variable whose value is infinitesimal. By convention, all differentials
are preceded by the letter “d”, which usually means something like “little bit of” or “little
change in”.

Any equation that involves derivatives can also be written as an equation involving
differentials. For example, if a square has side length x, then the area of the square is given
by the formula

A = x2.

Taking the derivative with respect to x yields the equation

dA
dx

= 2x.

This equation involves a derivative, which is really a ratio of two differentials. If we multi-
ply through by dx, we get an equation relating the two differentials:

dA = 2x dx.

Note that both sides of this equation are infinitesimal. This equation tells us how much
the area of the square will change if we increase the side length by a small amount. For
example, if x is 4 and we increase x by 0.003, then the change in A will be approximately

2(4)(0.003) = 0.024.
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Here is a summary of this technique:

Formula for dy in terms of x and dx.
Let x and y be variables, where y = f (x). To find a formula for dy in terms of x and dx,
start by taking the derivative with respect to x:

dy
dx

= f ′(x).

Next, multiply through by dx to obtain the desired formula:

dy = f ′(x)dx.

EXAMPLE 2 Suppose that y = x3 +4x.
(a) Find a formula for dy in terms of x and dx.
(b) Suppose we increase x from 3 to 3.02. Use differentials to estimate the corresponding

increase in the value of y.

SOLUTION Taking the derivative of the given formula yields

dy
dx

= 3x2 +4.

We can now multiply through by dx to get

dy = (3x2 +4)dx.

This answers part (a). For part (b), we substitute x = 3 and dx = 0.02 to get

dy =
(
3(3)2 +4

)
(0.02) = 0.62. �

In science, differentials are often used to estimate the possible error in the value of a
variable obtained through calculation. The following example illustrates this technique:

EXAMPLE 3 The energy stored in a certain capacitor obeys the formula

E =
1
2

CV 2

where V is the voltage difference across the leads, and C = 0.15 Joules/volt2.
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(a) Find a formula for dE in terms of V and dV .
(b) An engineer measures the voltage across the leads as 2.8 volts, with an error of±0.05 volts.

Find the energy stored in the capacitor, and estimate the error in your answer.

SOLUTION Taking the derivative with respect to V yields

dE
dV

= CV.

We can now multiply through by dV to get

dE = CV dV.

This answers part (a). For part (b), the energy stored in the capacitor is

E =
1
2

CV 2 =
1
2
(0.15)(2.8)2 = 0.588 Joules.

To estimate the error, we imagine what happens if we change V by dV = ±0.05 volts.
Using our differentials formula,

dE = CV dV = (0.15)(2.8)(±0.05) = ±0.021 Joules,

This is roughly the error in the value of the energy. �

Differential Area

In geometry, we can sometimes use differentials to represent very small amounts of length
or area. The following example illustrates this idea.

EXAMPLE 4 Consider again a square with area A = x2, where x is the side length. As
we saw before, if we increase x by a small amount dx, then the area increases by dA= 2xdx.

We can see this formula geometrically in the following figure:

dx

dx

x

x

The added area dA has been shaded in blue. The shaded region has the shape of an L, which
can be cut into two rectangles:
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dx

dx

x

x

Each rectangle has an area of x dx, which explains the formula dA = 2x dx. �

In the previous example, you might object to the breaking of the L shape into two rect-
angles. If you think about it carefully, there will be a small leftover square with area (dx)2:

dx

dx dx
dx

x

x

The area of this small square is a second order infinitesimal—an infinitesimal portion
of an infinitesimal. Such a quantity arises whenever an infinitesimal is squared, or when
two infinitesimals are multiplied together. When we are computing with infinitesimals, we
usually ignore second-order infinitesimals, in the same way that we usually ignore infinites-
imals when we are computing with real numbers.

Second-Order Infinitesimals
A second-order infinitesimal is a quantity obtained by squaring an infinitesimal or by
multiplying two infinitesimals together:

(dx)2 or (dx)(dy)

When computing with infinitesimals, second-order infinitesimals can usually be ignored.
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EXAMPLE 5 Find the shaded area in the following figure:
dx

dx

3

4

5

SOLUTION The shaded area can be broken up into two rectangles, one with an area of
3dx, and the other with an area of 4dx.

dx

dx

3

4

Again, this neglects a small square in the corner, as well as some small triangles on the
ends. The areas of these neglected pieces are all second-order infinitesimals, so they can
safely be ignored. Therefore, the total area is

dA = 3dx+4dx = 7dx. �

In preparation for the next example, consider the formulas for the area and circumfer-
ence of a circle:

A = πr2 and C = 2πr.

Curiously, the formula for the circumference is the derivative of the formula for the area:

dA
dr

=
d
dr

[
πr2] = 2πr = C.

The following example explains this intriguing observation.

EXAMPLE 6 A circle has a radius of r. If the radius is increased by a small amount dr,
how much does the area increase?

SOLUTION The following picture shows the increase in the area:
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dr

r

The added area dA has been shaded in blue. We can unbend the shaded area into the shape
of a rectangle:

dr
2Πr

The length of this rectangle is the same as the circumference of the circle, namely 2πr.
Thus

dA = 2πr dr.

In particular, dA/dr is the equal to the circumference 2πr. �

The “bending” that we used in the last example slightly decreased the area of the blue
region. To be precise, we can calculate the area of the blue region precisely using the
difference of the areas of two circles:

dA = π(r+dr)2 − πr2

= πr2 + 2πr dr + π(dr)2 − πr2

= 2πr dr + π(dr)2

As you can see, the bending decreased the area of the blue region by π(dr)2, which is
a second-order infinitesimal. Thus the bending did not change the area by a significant
amount.

In general, it is possible to bend a region with infinitesimal thickness without changing
the area significantly. For example, consider a curved strip with length L and width dw:

dw
L

Such a strip can be bent into the shape of a rectangle with length L and width dw. Thus the
area of the strip is the product L dw.

Area of a Narrow Strip
The area of a narrow strip with length L and width dw is given by the formula

dA = L dw.
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Differential Volume

We can use similar methods to find the differential volume of shapes in three dimensions.

EXAMPLE 7 A cylindrical shell has height h, radius r, and thickness dr.

Find a formula for the volume of the shell in terms of h, r, and dr.

SOLUTION If we make a vertical incision along the side of the cylindrical shell, we can
unroll it into the shape of a thin rectangular sheet:

2Πr

h

This rectangle has a height of h, a width of 2πr (the circumference of the shell), and a
thickness of dr. Therefore, the total volume is

dV = (2πr)(h)(dr) = 2πrh dr. �

Note that the volume in this example was equal to the area A of the side of the cylinder
multiplied by the thickness dr. This works for any thin sheet of material:

Volume of a Thin Sheet
The volume of a thin sheet with area A and thickness ds is given by the formula

dV = A ds.
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EXAMPLE 8 A sphere has a radius of r. If the radius is increased by a small amount dr,
how much does the volume increase?

SOLUTION The following picture shows a cutaway of the sphere, with the new volume
highlighted in orange.

The orange shape is known as a spherical shell. Its volume is equal to the surface area of
the sphere (4πr2) multiplied by the thickness of the shell:

dV = 4πr2 dr. �

As with the circle, we can divide through by dr in the formula above to obtain

dV
dr

= 4πr2.

This explains why the formula for the surface area of a sphere (4πr2) is the derivative of
the formula for the volume of a sphere (4

3πr3).
All of the examples so far have involved actual differentials, which are always infinites-

imal in size. However, it is possible to use these ideas to estimate the volumes of real
objects. The following examples illustrate this principle.

EXAMPLE 9 A cube with a side length of 25 cm is covered with paint having a thickness
of 0.5 mm. Estimate the amount of paint used.

SOLUTION The paint forms a thin sheet around the outside of the cube. The area covered
by the paint is

A = 6(25 cm)2 = 3750 cm2.

The thickness is ds = 0.5 mm = 0.05 cm. Therefore, the total volume of paint is

dV ≈ A ds = (3750 cm2)(0.05 cm) = 187.5 cm3.

Note that this is only an estimate, since the thickness ds of the paint is not a true infinitesi-
mal. In particular, this calculation does not take into account the paint required to cover the
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edges and the corners of the cube. This hardly affects the answer: a more careful calcula-
tion shows that 0.751 cm3 additional paint are required for the edges and corners, which is
less than 1% of the paint used. �

EXAMPLE 10 A hemispherical dome is constructed from concrete. The dome is 60 ft
high, and the concrete used to make the dome is 9 in thick. Estimate the total volume of
concrete used to construct the dome.

SOLUTION The surface area of the dome is half of the surface area of a sphere:

A =
1
2
(4πr2) =

1
2
(4π)(60 ft)2 = 22,619.47 ft2

The thickness is ds = 9 in = 0.75 ft, so the total volume is

dV ≈ A ds = (22,619.47 ft2)(0.75 ft) = 16,964.6 ft3.

Again, this is only an estimate, since the thickness of the concrete is not really infinitesimal.
�


