Exercises: Exponentials and Logarithms

1-8 ■ Find the exact value of each expression. Do not use a calculator.

1.
$$\log_{10}(1000)$$

2.
$$\log_{10}(0.00001)$$

3.
$$\log_{10}(1)$$

4.
$$\log_{10}(\sqrt{10})$$

5.
$$ln(e^3)$$

6.
$$ln(1/e)$$

7.
$$\ln(e\sqrt{e})$$

8.
$$\ln(-e)$$

9–14 ■ Solve for x. Round your answers to the nearest thousandth.

9.
$$5^x = 8$$

10.
$$3e^{4x} = 16$$

11.
$$\log_{10}(5x) = 2$$

11.
$$\log_{10}(5x) = 2$$
 12. $3 \ln(2x+1) = 8$

13.
$$\ln(x^3) = 4 + \ln(x^2)$$
 14. $\ln(5 + e^x) = 3$

14.
$$\ln(5+e^x)=3$$

15–16 ■ Express the given quantity as a single logarithm

15.
$$\log_{10}(5) + 2\log_{10}(3)$$

16.
$$\frac{\ln(36)}{2} - \ln(2)$$

17–20 ■ Express the given quantity as a power of e.

17.
$$(e^x)^5$$

18.
$$\frac{1}{e^x}$$

20.
$$x^{\sqrt{x}}$$

21–30 Compute f'(x).

21.
$$f(x) = 5e^{3x} + 2\ln(x)$$

22.
$$f(x) = 4x^2e^{-x}$$

23.
$$f(x) = \ln(x^3 + 5x + 2)$$
 24. $f(x) = \ln(\cos x)$

24.
$$f(x) = \ln(\cos x)$$

25.
$$f(x) = \frac{e^{x/2}}{5}$$

26.
$$f(x) = x^3 \ln(\sin x)$$

27.
$$f(x) = \frac{1}{1 + e^{4x}}$$

28.
$$f(x) = \ln(1 + e^{\sin x})$$

29.
$$f(x) = 5^x$$

30.
$$f(x) = x^{\sin x}$$

- **31.** Find the equation of the tangent line to the curve $y = 2e^{3x}$ at the
- **32.** Find the equation of the tangent line to the curve $y = \ln x$ at the point $(5, \ln 5)$.

33–36 ■ Based on the given data, classify the function f(x) as linear, exponential, or neither.

33.
$$f(0) = 4$$
, $f(1) = 6$, and $f(2) = 9$.

34.
$$f(0) = 6$$
, $f(10) = 8$, and $f(20) = 10$.

35.
$$f(0) = 80$$
, $f(0.1) = 60$, and $f(0.2) = 45$.

36.
$$f(0) = 10$$
, $f(1) = 20$, and $f(2) = 35$.

37–38 ■ Find the formula for an exponential function f(x)satisfying the given conditions.

37.
$$f(0) = 0.4$$
, $f(2) = 1.8$

38.
$$f(0) = 8$$
, $f'(0) = 12$

- **39.** At t = 0, a colony of bacteria has a population of 10,000. By t = 20 min, the population has increased to 18,000.
 - (a) Assuming exponential growth, find a formula for the population of bacteria after t minutes.
 - (b) When will the population reach 100,000?
 - (c) How quickly will the population be growing at this time?
- **40.** A 2.00-kg sample of radioactive ¹³⁷Cs is buried underground. Five years later, the sample is exhumed, and is found to have a mass of only 1.78 kg.
 - (a) Assuming exponential decay, find a formula for the mass of the sample after t years.
 - (b) What is the half-life of ¹³⁷Cs?
- **41.** A capacitor with an initial charge of 5.0 coulombs is attached to a lightbulb. At the moment that the circuit is connected, the capacitor begins to discharge at a rate of 0.08 coulombs/sec.
 - (a) Assuming the charge decays exponentially, find a formula for the charge on the capacitor after t seconds.
 - (b) How long will it take for the capacitor to discharge 90% of its initial charge?
- **42.** A 0.2-mole sample of ¹⁵⁵Eu has been prepared for study. Based on Geiger counter readings, the sample is decaying at a rate of 0.00008 moles/day.
 - (a) Find a formula for the amount of ¹⁵⁵Eu that will be left
 - (b) What is the half-life of ¹⁵⁵Eu? Express your answer in years.

Answers

1. 3 **2.** -5 **3.** 0 **4.** 1/2 **5.** 3 **6.** -1 **7.** 1.5 **8.** undefined **9.** 1.292 **10.** 0.418 **11.** 20 **12.** 6.696

13. 54.598 **14.** 2.714 **15.** $\log_{10}(45)$ **16.** $\ln(3)$ **17.** e^{5x} **18.** e^{-x} **19.** $e^{x \ln(3)}$ **20.** $e^{\sqrt{x} \ln(x)}$

21. $15e^{3x} + \frac{2}{x}$ **22.** $(8x - 4x^2)e^{-x}$ **23.** $\frac{3x^2 + 5}{x^3 + 5x + 2}$ **24.** $-\tan x$ **25.** $\frac{e^{x/2}}{10}$ **26.** $3x^2 \ln(\sin x) + x^3 \cot x$

27. $-\frac{4e^{4x}}{(1+e^{4x})^2}$ **28.** $\frac{e^{\sin x}\cos x}{1+e^{\sin x}}$ **29.** $5^x\ln(5)$ **30.** $\left(\frac{\sin x}{x}+\ln(x)\cos(x)\right)x^{\sin x}$

31. y = 2 + 6x **32.** $y = \ln(5) + \frac{1}{5}(x - 5)$ **33.** exponential **34.** linear **35.** exponential **36.** neither

37. $0.4e^{(0.752039)x}$ **38.** $8e^{1.5x}$ **39.** (a) $10,000e^{(0.029389)t}$ (b) t = 78.3 min (c) 2939 bacteria/min

40. (a) $2e^{(-0.023307)t}$ (b) 29.7 years **41.** (a) $5e^{(-0.016)t}$ coulombs (b) 144 sec

42. (a) $0.2e^{(-0.0004)t}$ moles (b) 4.74 years