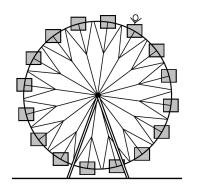
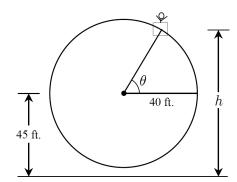
Homework 7

1. Little Joey is riding the Ferris wheel at the county fair:



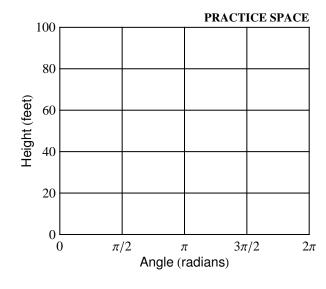


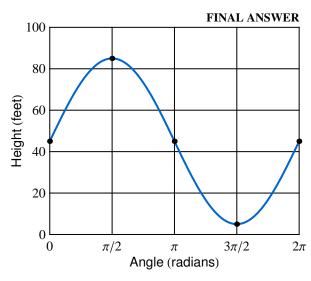
The wheel has a radius of 40 feet, and the center of the wheel sits 45 feet above the ground. Let h be little Joey's height above the ground, and let θ be the angle shown in the picture above.

(a) Determine little Joey's height h above the ground for $\theta = 0^{\circ}$, 90° , 180° , and 270° .

_0	h
0°	45 ft.
90°	85 ft.
180°	45f1.
270°	5 ft.
	l

(b) Sketch a graph of h as a function of θ .





(c) Find a formula for h as a function of θ . Make sure that your formula agrees with your answers to parts (a) and (b).

(d) Use your answer to part (c) to find a formula for $\frac{dh}{dt}$ in terms of θ and $\frac{d\theta}{dt}$.

(e) Given that the Ferris wheel is rotating once every 20 seconds, find the value of $\frac{d\theta}{dt}$. Express your answer in radians per second.

$$\frac{d\theta}{dt} = \frac{2\pi \, rodians}{20 \, seconds} = \frac{\pi}{10} \, rod/sec.$$

(f) How quickly is little Joey ascending when $\theta = 0$?

$$\frac{dh}{dt} = 40 \cos(0) \left(\frac{\pi}{10}\right)$$

$$\frac{dh}{dt} = 4\pi \text{ ft./sec.} \approx 12.57 \text{ ft./sec.}$$

2. As part of a chemistry experiment, 0.250 moles of butyl chloride (C₄H₉Cl) are dissolved in water. The butyl chloride reacts with the water, producing butyl alcohol and hydrochloric acid. Initially, this reaction consumes butyl chloride at a rate of 0.030 moles/min.

Let t be the time in minutes, and let n be the number of moles of butyl chloride remaining.

(a) Assuming that n decays exponentially, find a formula for n in terms of t.

$$h=.25e^{kt}$$
 Upon $t=0$:
 $dn_{=}.25e^{kt}(k)$ $-.03=.25e^{k(0)}(k)$
 $-.03=.25k$
 $k=-.12$
 $n=.25e^{-.12t}$

(b) How much butyl chloride will remain after 10 minutes?

$$t=10$$
 $n=.25e^{-.12(10)} \approx [.0753 \text{ moles}]$

(c) How quickly is the butyl chloride being consumed at this time?

$$\frac{dn}{dt} = .25e^{-.12t}(-.12)$$

$$t=10: \frac{dn}{dt} = .25e^{-.12(10)}(-.12) \approx -.00904 \text{ modes/min.}$$

(d) How long will it take for 95% of the butyl chloride to be consumed?

95% consumed => 5% remaining
.05 (.250)=.0125 modes remaining
.0125 = .25e^{-.12t}
.05 =
$$e^{-.12t}$$

ln(.05)=-.12t
 $t = \ln(.05)$ /-.12 ≈ 24.96 min.

3. In astronomy, the *apparent magnitude* is a logarithmic measure of the brightness of a star as seen by an observer on Earth. The apparent magnitude *M* of a star is related to the brightness *B* of the observed light by the formula

$$M = -1.09 \ln \left(\frac{B}{B_0} \right)$$

where $B_0 = 2.13 \times 10^{-6}$ lux. Note that brighter stars have *smaller* apparent magnitudes.

(a) As seen from Earth, the star Polaris (the North Star) has a brightness of 3.5×10^{-7} lux. What is the apparent magnitude of Polaris?

$$M = -1.09 \ln \left(\frac{3.5 \times 10^{-7}}{2.13 \times 10^{-6}} \right) \approx 1.968$$

(b) The brightest star in the night sky is Sirius, with an apparent magnitude of -1.47. What is the brightness of the light that the Earth receives from this star?

$$\begin{array}{ll}
-1.47 &= -1.09 \ln \left(\frac{B}{2.13 \times 10^{-6}} \right) \\
1.3486 &= \ln \left(\frac{B}{2.13 \times 10^{-6}} \right) & B &= e^{1.3486} \left(2.13 \times 10^{-6} \right) \\
e^{1.3486} &= \frac{B}{2.13 \times 10^{-6}} & B \approx \boxed{8.205 \times 10^{-6} \text{ lux}}
\end{array}$$

(c) To an observer on Earth, the sun is approximately 12 billion times as bright as Sirius. What is the apparent magnitude of the sun?

$$M = -1.09 \ln \left(\frac{8.205 \times 10^{-6} \times 12,000,000,000}{2.13 \times 10^{-6}} \right)$$

(d) Find a formula relating
$$\frac{dM}{dt}$$
 and $\frac{dB}{dt}$.

$$M = -1.09 \ln \left(\frac{B}{B_0}\right)$$

$$\frac{dM}{dt} = -1.09 \left(\frac{1}{B/B_0}\right) \left(\frac{L}{B_0}\right) \frac{dB}{dt}$$

$$\frac{dM}{dt} = -1.09 \left(\frac{B_{\circ}}{B}\right) \left(\frac{1}{B_{\circ}}\right) \frac{dB}{dt}$$

$$\frac{dM}{dt} = -1.09 \left(\frac{L}{B}\right) \frac{dB}{dt}$$

(e) The apparent magnitude of the variable star Delta Cephei oscillates regularly over the course of several days. At a certain time, the apparent magnitude of Delta Cephei is 3.90, and the magnitude is decreasing at a rate of 0.010/hour. How quickly is the brightness of the star increasing?

$$3.90 = -1.09 \ln \left(\frac{B}{2.13 \times 10^{-6}} \right)$$

$$-3.57798 = \ln \left(\frac{B}{2.13 \times 10^{-6}} \right)$$

$$e^{-3.57798} = \frac{B}{2.13 \times 10^{-6}}$$

$$\frac{dM}{dt} = -1.09 \left(\frac{1}{B} \right) \frac{dB}{dt}$$

$$-.01 = -1.09 \left(\frac{1}{5.9495 \times 10^{-8}} \right) \frac{dB}{dt}$$

$$\frac{dB}{dt} = \frac{1}{5.46 \times 10^{-10}} \frac{1000 \times 1000}{1000 \times 1000}$$