Practice Problems: Exam 2

- 1. A chemist prepares a 100-mg sample of ²¹⁰Po. Because of radioactive decay, the mass of the sample after one day is only 99.5 mg.
 - (a) Find a formula for the mass of the sample after *x* days.
 - (b) How long will it take for the mass of the sample to reach 50 mg? Round your answer to the nearest day.
- 2. At noon, a bacteria culture contains 500 bacteria with an instantaneous growth rate of 150 bacteria/hour.
 - (a) Assume that the number of bacteria in the culture is increasing exponentially. Find a formula for the number of bacteria after *t* hours.
 - (b) How many bacteria are in the culture at 7:30 pm?
 - (c) At what time does the culture contain 15,000 bacteria?
- 3. A lighthouse sits on a small island near a rocky shoreline, emitting a rotating beam of light. The lighthouse is 3 km from the shore, and it emits a beam of light that rotates four times per minute:

- (a) Find a formula for x in terms of θ .
- (b) Using your answer to part (a), find a formula for $\frac{dx}{dt}$ in terms of θ and $\frac{d\theta}{dt}$.
- (c) Based on your formula from part (b), how quickly is the end of the light beam moving along the shoreline when $\theta = 30$ degrees?

4. The following picture shows the curve defined by the equation $x^3 + y^3 = 9y$.

- (a) Use implicit differentiation to find a formula for $\frac{dy}{dx}$ in terms of x and y.
- (b) Use your answer to part (a) to find the slope of the curve at the point (2,1).

5. (a) Find
$$\frac{dy}{dx}$$
 if $y = \frac{3x - 5}{x^2 - 4}$.

- (b) Find f'(x) if $f(x) = (\ln x \ln 2)^2$.
- (c) Find $\frac{d}{dx}(x^2e^{-3x})$.
- (d) Find $\frac{dy}{dx}$ if $y = x \sec(x^2 + 1)$.
- (e) Find g'(u) if $g(u) = \sin^{-1}(3x^2)$.
- (f) Find $\frac{dy}{dx}$ if $y = \tan^3(x^2 + 1)$.
- (g) Find $\frac{d\theta}{dt}$ if $\theta = \arctan(\ln t)$.
- 6. The following table shows some information about a function:

х	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	1.2	1.8	2.8	4.2	6.0	8.2

Based on this data, estimate each of the following quantities as accurately as you can.

- (a) f'(0.5)
- (b) f'(0.3)
- (c) f''(0.4)

7. The following formula lets you determine the area of a triangle given the lengths of two sides and the measure of the angle between them:

For this problem, the lengths a and b are both constant, with a=4 inches and b=5 inches.

- (a) Suppose that θ is increasing at a rate of 0.15 rad/min. How quickly is the area of the triangle increasing at the instant that $\theta = 0.4$ rad?
- (b) Suppose instead that the area is increasing at a rate of $0.5 \text{ in}^2/\text{min}$. How quickly is θ increasing at the instant that the area is 6 square inches?
- 8. (a) Find f''(x) if $f(x) = x \cos x$.

(b) Find
$$\frac{d^2y}{dx^2}$$
 if $y = \sqrt{3x+1}$.

(c) Find
$$\frac{dy}{dx}$$
 if $y^3 + \sin y = x + \cos x$.

- 9. Consider the function $f(x) = \frac{36}{x} + 25x$.
 - (a) Find the absolute minimum value of f(x) on the interval [0.5, 2.5].
 - (b) Find the absolute maximum value of f(x) on the interval [0.5, 2.5].
- 10. Sketch the graph of the function f, given the following information.

General Information	First Derivative	Second Derivative		
f(-1) = 3 and $f(1) = 0$.	f'(-1) = 0 and $f'(1) = 0$.	f''(0) = 0 and $f''(2) = 0$.		
f is continuous.	f'(x) > 0 for $x < -1$.	f''(x) < 0 for $x < 0$.		
$ \lim_{x \to -\infty} f(x) = -\infty. $	f'(x) < 0 for $-1 < x < 1$.	f''(x) > 0 for $0 < x < 2$.		
$\lim_{x \to \infty} f(x) = 4.$	f'(x) > 0 for $x > 1$.	f''(x) < 0 for x > 2.		

11. The function f(x) is graphed below:

(a) What is $\lim_{x\to 3^-} f(x)$?

(b) What is $\lim_{x\to\infty} f(x)$?

(c) What is $\lim_{x\to 7^+} f(x)$?

(d) For what values of x is f(x) not continuous?

(e) Is f''(8) positive or negative?

- (f) What is f''(-2)?
- 12. Consider the following piecewise-defined function:

$$f(x) = \begin{cases} 3x+1 & \text{if} & x < -3\\ 1-x^2 & \text{if} & -3 \le x \le -1\\ 1/x & \text{if} & -1 < x \le 1\\ 5-x & \text{if} & x > 1 \end{cases}$$

(a) What is f(-3)?

(b) What is $\lim_{x \to -1^+} f(x)$?

(c) What is $\lim_{x \to -1^-} f(x)$?

(d) What is $\lim_{x \to -3} f(x)$?

(e) What is $\lim_{x \to 1} f(x)$?

(f) For what values of x is f(x) not continuous?

- 13. Evaluate the following limits:
 - (a) $\lim_{x \to 3^+} \frac{x-5}{x^2-9}$

(b) $\lim_{x \to 2^+} \ln(x-2)$

(c) $\lim_{x \to -5} \frac{|x+5|}{x+5}$

(d) $\lim_{x \to 0^-} \frac{x}{\sqrt{4x^2 - x^4}}$

- 14. A penny is dropped from the top of a 400-foot-tall building. The penny's initial velocity is 0, but it accelerates downwards due to gravity at a rate of 32 feet/second². How long does it take for the penny to hit the ground?
- 15. Carol plans to create a large open box (a box without a top) from a piece of cardboard. She has a cardboard rectangle with side lengths 6 feet and 12 feet. She will cut off a square with side length *a* from each corner, and then fold the resulting flaps up to create a box.

Determine the maximum possible volume of the box.