Practice Problem Solutions: Exam 2

1. (a) We know the formula will be of the form $y = be^{kt}$. Since the initial amount is 100-mg, we have that b = 100. We can solve for k by plugging in y = 99.5 and t = 1:

$$99.5 = 100e^{k(1)}$$

Then, $0.995 = e^k$, so $k = \ln(0.995) \approx -0.005012542$. Thus the formula is $y = 100e^{-0.005012542t}$ (b) We set y = 50 in the above formula:

$$50 - 100e^{-0.005012542t}$$

Then, $0.5 = e^{-0.005012542t}$, so $\ln(0.5) = -0.005012542t$. Thus, $t \approx 138$ days

2. (a) We know that the formula is of the form $y = be^{kt}$ with b = 500. We take the derivative:

$$\frac{dy}{dt} = 500e^{kt}(k)$$

Plugging in t = 0 and $\frac{dy}{dt} = 150$, we have 150 = 500k. Thus, k = 0.3, so the formula is $y = 500e^{0.3t}$.

- (b) We let y = 7.5 in the above formula: $y = 500e^{0.3(7.5)} \approx 4743.87$. At 7:30pm, there are approximately 4744 bacteria.
- (c) We let y = 15,000 in the formula from part (a): $15,000 = 500e^{0.3t}$. Then, $30 = e^{0.3t}$, so that $\ln(30) = 0.3t$, so $t = \ln(30)/0.3 \approx 11.337$ hours. Thus, there are 15,000 bacteria 11.337 hours after noon, which corresponds to approximately 11:20pm.
- 3. (a) We have that $\tan \theta = \frac{x}{3}$. Thus, $x = 3 \tan \theta$. (b) Taking the derivative of part (a), we get $\frac{dx}{dt} = 3(1 + \tan^2 \theta) \frac{d\theta}{dt}$.
 - (c) We have that $\theta = 30^\circ = \frac{\pi}{6}$ radians. Also, since the beam of light rotates four times every minute, we have that $\frac{d\theta}{dt} = \frac{4(2\pi) \text{ radians}}{1 \text{ minute}} = 8\pi$ radians/minute. We can plug this into the formula from part (b):

$$\frac{dx}{dt} = 3\left(1 + \tan^2(\pi/6)\right)(8\pi) \approx \boxed{100.53 \text{ km/min}}$$

4. (a) By implicit differentiation:

$$3x^2 + 3y^2\frac{dy}{dx} = 9\frac{dy}{dx}$$

We take both terms involving $\frac{dy}{dx}$ to the same side: $3x^2 = 9\frac{dy}{dx} - 3y^2\frac{dy}{dx}$. Thus, $3x^2 = \frac{dy}{dx}(9 - 3y^2)$. Dividing by $9 - 3y^2$, we get $\frac{dy}{dx} = \frac{3x^2}{dx}$

$$\frac{dy}{dx} = \frac{3x^2}{9 - 3y^2}$$

(b) We can plug in x = 2 and y = 1 into the above formula to find the slope at the point (2, 1):

$$\frac{dy}{dx} = \frac{3(2)^2}{9-3(1)^2} = \boxed{2}$$

5. (a) We have $y = \frac{3x-5}{x^2-4}$. Using the quotient rule, we get

$$\frac{dy}{dx} = \frac{(x^2 - 4)(3) - (3x - 5)(2x)}{(x^2 - 4)^2}$$

This simplifies to $\frac{dy}{dx} = \frac{-3x^2 + 10x - 12}{(x^2 - 4)^2}.$

(b) Since $f(x) = (\ln x - \ln 2)^2$, we have that $f'(x) = 2(\ln x - \ln 2)(1/x)$. Thus,

$$f'(x) = \frac{2\ln x - 2\ln 2}{x}$$

(c) Using the product rule, we have:

$$\frac{d}{dx}\left(x^{2}e^{-3x}\right) = x^{2}e^{-3x}(-3) + e^{-3x}(2x) = \boxed{-3x^{2}e^{-3x} + 2xe^{-3x}}$$

(d) We have $y = x \sec(x^2 + 1)$. From the formula sheet, we see that $\frac{d}{dx}(\sec x) = \sec x \tan x$. Thus,

$$\frac{dy}{dx} = x \sec(x^2 + 1) \tan(x^2 + 1)(2x) + \sec(x^2 + 1)$$

Simplifying, we have $\frac{dy}{dx} = 2x^2 \sec(x^2 + 1)\tan(x^2 + 1) + \sec(x^2 + 1).$

(e) We have $g(u) = \sin^{-1}(3x^2)$. From the formula sheet, we see that $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$. Thus,

$$g'(u) = \frac{1}{\sqrt{1 - (3x^2)^2}} (6x)$$

Simplifying, we have $g'(u) = \frac{6x}{\sqrt{1-9x^4}}$.

(f) We have $y = \tan^3(x^2 + 1)$. From the formula sheet, we see that $\frac{d}{dx}(\tan x) = \sec^2 x$. Thus,

$$\frac{dy}{dx} = 3\tan^2(x^2 + 1)\sec^2(x^2 + 1)(2x)$$

Simplifying, we have $\frac{dy}{dx} = 6x \tan^2(x^2 + 1) \sec^2(x^2 + 1)$.

(g) We have $\theta = \arctan(\ln t)$. Note that $\arctan x = \tan^{-1} x$. From the formula sheet, we see that $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$. Thus,

$$\frac{d\theta}{dt} = \frac{1}{1 + (\ln t)^2} \left(\frac{1}{t}\right)$$

Simplifying, we have $\frac{d\theta}{dt} = \frac{1}{t(1 + (\ln t)^2)}$.

6. (a) Since f(0.4) = 2.8 and f(0.6) = 4.2, we can approximate f'(0.5) as follows:

$$f'(0.5) \approx \frac{4.2 - 2.8}{0.6 - 0.4} = \boxed{7}$$

(b) Since f(0.2) = 1.8 and f(0.4) = 2.8, we can approximate f'(0.5) as follows:

$$f'(0.3) \approx \frac{2.8 - 1.8}{0.4 - 0.2} = \boxed{5}$$

(c) Since $f'(0.3) \approx 5$ and $f'(0.5) \approx 7$ by parts (a) and (b), we can approximate f''(0.4) as follows:

$$f''(0.4) \approx \frac{7-5}{0.5-0.3} = \boxed{10}$$

7. (a) Since a = 4 inches and b = 5 inches, we have that $A = 10\sin\theta$. Differentiating this formula with respect to *t*, we get

$$\frac{dA}{dt} = 10\cos\theta\frac{d\theta}{dt}$$

If $\theta = 0.4$ rad and $\frac{d\theta}{dt} = 0.15$ rad/min, then we have

$$\frac{dA}{dt} = 10\cos(0.4)(0.15) \approx \boxed{1.382 \text{ in}^2/\text{min}}$$

(b) If $A = 6 \text{ in}^2$, then we can use the original formula to find θ : $6 = 10 \sin \theta$. Thus, $\sin \theta = 0.6$, so $\theta \approx 0.6435$ radians. Also, we have that $\frac{dA}{dt} = 0.5 \text{ in}^2/\text{min}$. Now, we can find $\frac{d\theta}{dt}$:

$$0.5 = 10\cos(0.6435)\frac{d\theta}{dt}$$

Thus, $\frac{d\theta}{dt} = .0625 \text{ rad/min}$.

- 8. (a) We have $f(x) = x \cos x$. Using the product rule, $f'(x) = -x \sin x + \cos x$. Taking the derivative again, we get $f''(x) = -x \cos x \sin x \sin x$. Thus, $f''(x) = -x \cos x 2 \sin x$
 - (b) We have $y = (3x+1)^{1/2}$. Taking the derivative, we get $\frac{dy}{dx} = (1/2)(3x+1)^{-1/2}(3)$. Taking the derivative again, we get $\frac{d^2y}{dx^2} = (-1/4)(3x+1)^{-3/2}(3)(3)$. Thus, $\frac{d^2y}{dx^2} = \frac{-9}{4(3x+1)^{3/2}}$.
 - (c) We have $y^3 + \sin y = x + \cos x$. By implicit differentiation, we get

$$3y^2 \frac{dy}{dx} + \cos y \frac{dy}{dx} = 1 - \sin x$$

Thus, $\frac{dy}{dx} (3y^2 + \cos y) = 1 - \sin x$. Dividing by $3y^2 + \cos y$, we get $\boxed{\frac{dy}{dx} = \frac{1 - \sin x}{3y^2 + \cos y}}$

9. (a) First, we take the derivative. Since $f(x) = 36x^{-1} + 25x$, we have $f'(x) = -36x^{-2} + 25$. To find the critical points, we set this equal to zero and solve.

$$-36x^{-2} + 25 = 0 \quad \Rightarrow \quad 25 = \frac{36}{x^2} \quad \Rightarrow \quad 25x^2 = 36 \quad \Rightarrow \quad x = \pm 6/5$$

Since -6/5 is outside the interval [0.5,2.5], we can ignore it. Thus, we have one critical point x = 6/5 inside the interval. We need to check the critical point and the endpoints:

$$f(6/5) = 60$$

$$f(0.5) = 84.5$$

$$f(2.5) = 76.9$$

Thus, the absolute minimum is 60 and it occurs at x = 6/5.

- (b) From part (a), we see that the absolute maximum is 84.5 and it occurs at x = 0.5.
- 10. From the first derivative information, we see that *f* is increasing for x < -1 and x > 1 and that *f* is decreasing for -1 < x < 1. From the second derivative information, we see that *f* is concave down for x < 0 and x > 2 and that *f* is decreasing for 0 < x < 2. Also, since $\lim_{x \to \infty} f(x) = 4$, the graph has a horizontal asymptote at y = 4. The graph of *f* looks like:

- 11. (a) $\lim_{x \to 3^{-}} f(x) = 2$ (b) $\lim_{x \to \infty} f(x) = 0$
 - (c) $\lim_{x \to 7^+} f(x) = \boxed{-\infty}$ (d) It is not continuous at x = 3 and x = 7.
 - (e) Since the graph is concave down at x = 8, (f) Near x = -2, the graph is linear, so f''(8) is negative. f''(-2) = 0.
- 12. (a) For x = -3, we use the second piece and get that $f(-3) = 1 (-3)^2 = \boxed{-8}$.
 - (b) Since $x \to -1$ from the right, we use the third piece and get that $\lim_{x \to -1^+} f(x) = 1/(-1) = -1$.
 - (c) Since $x \to -1$ from the left, we use the second piece and get that $\lim_{x \to -1^-} f(x) = 1 (-1)^2 = 0$.
 - (d) First, we compute the left- and right-hand limits:

$$\lim_{x \to -3^+} f(x) = 1 - (-3)^2 = -8$$
$$\lim_{x \to -3^-} f(x) = 3(-3) + 1 = -8$$

Since the left- and right-hand limits are equal, we have that $\lim_{x \to -3} f(x) = \boxed{-8}$. (e) First, we compute the left- and right-hand limits:

$$\lim_{x \to 1^{+}} f(x) = 5 - 1 = 4$$
$$\lim_{x \to 1^{-}} f(x) = 1/1 = 1$$

Since the left- and right-hand limits are not equal, we have that $\lim_{x\to 1} f(x)$ does not exist.

(f) First, we notice that the third piece has a vertical asymptote at x = 0, so the function is discontinuous at x = 0. The other possible places for the function to be discontinuous would be at x = -3, x = -1, or x = 1.

From part (d), we see that the left- and right-hand limits are equal at x = -3. Also, these limits are equal to f(-3), so f is continuous at x = -3.

From parts (b) and (c), we see that the left- and right-hand limits are different at x = -1, so f is not continuous at x = -1.

Finally, from part (e), we see that the left- and right-hand limits are different at x = 1, so f is not continuous at x = 1. Thus, we have that f is not continuous at x = -1, x = 0, and x = 1.

13. (a) Plugging in 3.01, 3.001, and 3.0001 for x gives -33.1115, -333.1111, and -3333.1111, respectively. Thus, $\lim_{x \to 3^+} \frac{x-5}{x^2-9} = \boxed{-\infty}$.

(b) The graph of ln x has a vertical asymptote at x = 0 with ln x → -∞ as x → 0⁺. The graph of ln(x - 2) is the graph of ln x shifted 2 to the right, so the graph of f(x) = ln(x - 2) has a vertical asymptote at x = 2. Thus, lim_{x→2⁺} ln(x - 1) = -∞.

We can also find the limit numerically. Plugging in 2.0001, 2.00001, and 2.000001 for x gives -9.2103, -11.5129, and -13.8155, respectively. We can see that the limit is $\boxed{-\infty}$.

(c) If
$$x > -5$$
, then $\frac{|x+5|}{x+5} = 1$. If $x < -5$, then $\frac{|x+5|}{x+5} = -1$. Thus, we have that

$$\lim_{x \to -5^+} \frac{|x+5|}{x+5} = 1$$

$$\lim_{x \to -5^-} \frac{|x+5|}{x+5} = -1$$

Since the right-and left-side limits are not equal, we have that $\lim_{x\to -5} \frac{|x+5|}{x+5}$ does not exist. (d) Plugging in -.1 and -0.01 for x gives -.500626 and -.50000625, respectively. Thus,

1) rugging in -.1 and -0.01 for x gives -.300020 and -.30000023, respectively. If

$$\lim_{x \to 0^{-}} \frac{x}{\sqrt{4x^2 - x^4}} = -1/2$$

14. The penny's acceleration is a = -32 feet/second². We can take the antiderivative to find the velocity: $v = -32t + C_1$. Since v = 0 when t = 0, we have that $0 = -32(0) + C_1$. Thus, $C_1 = 0$, so the velocity is v = -32t.

To find the height *h* of the penny, we can take the antiderivative of *v*. We get that $h = -16t^2 + C_2$. The initial height of the penny is 400 ft, so we can plug in h = 400 and t = 0 to find C_2 : $400 = -16(0)^2 + C_2$. Thus, $C_2 = 400$, so the height is $h = -16t^2 + 400$.

We want to know when the penny hits the ground, which is when h = 0. So, we plug in h = 0 and solve:

$$0 = -16t^2 + 400 \implies 16t^2 = 400 \implies t = \pm 5$$

Thus, the penny hits the ground 5 seconds after it is dropped.

15. The height of the box is a, the length is 12 - 2a, and the width is 6 - 2a. Thus, the volume of the box is

$$V = a(12 - 2a)(6 - 2a) = 4a^3 - 36a^2 + 72a$$

We take the derivative: $\frac{dV}{da} = 12a^2 - 72a + 72$. The maximum will occur when the derivative equals 0, so we set the derivative equal to 0 and solve. We have $12a^2 - 72a + 72 = 0$, which simplifies to $a^2 - 6a + 6 = 0$. To solve this equation, we can use the quadratic formula:

$$a = \frac{6 \pm \sqrt{36 - 4(6)}}{2}$$

Thus, $a \approx 4.732$ or $a \approx 1.268$. Note that *a* is between 0 and 3, so the maximum is at $a \approx 1.268$ and the maximum volume is $V = 1.268(12 - 2 \cdot 1.268)(6 - 2 \cdot 1.268) = 41.569 \text{ ft}^3$.