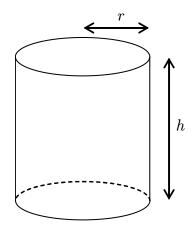
Practice Problems: Final Exam

1. Estimate the integral $\int_0^1 \frac{1}{1+x^3} dx$ using five rectangles and left endpoints.

2. A cylindrical cup with an open top must have a volume of 300 cm^3 :



Find the dimensions of the cup that minimize the amount of material used.

3. Evaluate the following integrals.

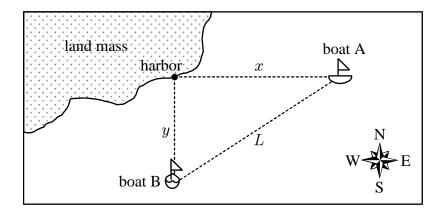
(a)
$$\int_{1}^{2} x(x+2) dx$$

(b) $\int_{1}^{4} \sqrt{x} dx$
(c) $\int_{0}^{2} \frac{1}{5x+1} dx$
(d) $\int_{0}^{\pi/2} \cos(3x) dx$
(e) $\int_{-1}^{1} (1-x)^{5} dx$
(f) $\int_{0}^{\pi/4} \sec^{2} x dx$
(g) $\int_{0}^{2} (e^{x}+1)^{2} dx$
(h) $\int_{0}^{1} (x^{3} \cos x + 3x^{2} \sin x) dx$
(i) $\int_{0}^{4} 2x \sqrt{x^{2}+9} dx$
(j) $\int_{0}^{1} \frac{e^{2x}}{1+e^{2x}} dx$

4. The following table shows the velocity of an object over the course of one second.

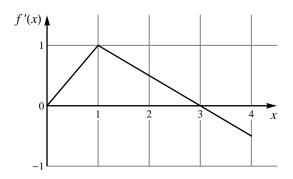
t (seconds)	0.0	0.2	0.4	0.6	0.8	1.0
v (meters/sec)	3.6	4.0	4.3	4.6	4.8	4.9

- (a) Estimate the distance traveled by the object between t = 0 and t = 1.
- (b) Estimate the acceleration of the object at t = 0.4.
- (c) Estimate the velocity of the object at t = 0.43.
- 5. Two boats are both sailing away from a harbor, as shown in the picture below.



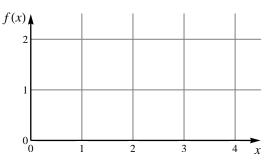
Boat A is 80 miles east of the harbor, and is sailing due east at 15 miles/hour. Boat B is 60 miles south of the harbor, and is sailing due south at 20 miles/hour. How quickly is the distance between the two boats increasing?

6. The following graph shows the **derivative** of a function f(x):



- (a) Given that f(0) = 1/2, evaluate f(1) and f(4).
- (b) Find the maximum value of f(x) on the interval [0,4].
- (c) For what values of x is f''(x) positive? For what values of x is f''(x) negative?

(d) Sketch a graph of the function f(x):



- 7. (a) Find g'(u) if $g(u) = \sqrt{1+u^2}$.
 - (b) Find $\frac{dx}{d\theta}$ if $x = \frac{1}{5}\sec\left(\frac{\theta}{2}\right)$

(c) Find
$$\frac{dy}{dx}$$
 if $y = \ln(\sin x)$.

(d) Find
$$f'(x)$$
 if $f(x) = \int_3^x \frac{1}{1+u^4} du$

(e) Find $\frac{dy}{dx}$ if $4x^2 + y^2 = 9$.

(f) Find
$$f(x)$$
 if $f'(x) = x^2 + e^{2x}$ and $f(0) = 4$.

8. Consider the following piecewise-defined function:

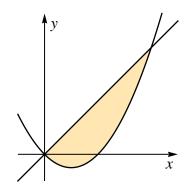
$$f(x) = \begin{cases} 3x - 1 & \text{if } x \le -2\\ x^2 - 2 & \text{if } -2 < x \le 1\\ 2x - 3 & \text{if } 1 < x \le 3\\ 6 - x & \text{if } x > 3 \end{cases}$$

- (b) What is $\lim_{x \to -2^+} f(x)$? (a) What is f(-2)?
- (c) What is $\lim_{x \to -2^-} f(x)$?

(c) What is
$$\lim_{x \to -2^{-}} f(x)$$
?
(d) What is $\int_{1}^{6} f(x) dx$?
(e) For what values of x is $f(x)$ not continuous?
(f) For what values of x

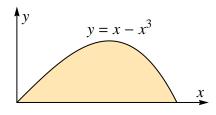
(f) For what values of x is f(x) not differentiable?

- 9. Evaluate the following limits:
 - (a) $\lim_{x \to \infty} \frac{x}{x+5}$ (b) $\lim_{x \to 1^+} \frac{x}{1-x}$ (c) $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$ (d) $\lim_{x \to \pi/2^+} \tan x$ t^{b-1}
 - (e) $\lim_{b \to \infty} \int_1^b \frac{1}{x^2} dx$
- 10. The following figure shows the region between the curves $y = x^2 x$ and y = x.



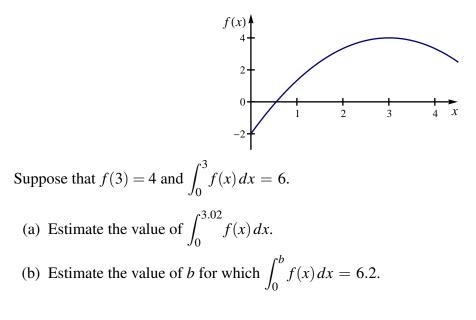
Find the area of this region.

11. The following figure shows the region in the first quadrant lying under the graph of $y = x - x^3$.



- (a) Find the area of this region.
- (b) Find the volume of the solid obtained by rotating this region around the *x*-axis.

12. The function f(x) is graphed below.



13. In physics, the kinetic energy of a moving object is given by the formula

$$K = \frac{1}{2}mv^2$$

where *m* is the mass and *v* is the velocity. Suppose an object with a mass of 2.00 kg is accelerating at a rate of 6.00 m/s^2 . How quickly is the kinetic energy of the object increasing when the velocity is 23.0 m/s?

14. Use differentials to estimate the area of the shaded region in the following figure.

