Homework 2 Solutions

Exercise 1.5.11 Part (3)

(1) $(\forall x \text{ in } Z)[(A(x) \to R(x)) \lor T(x)]$ (2) $(\exists x \text{ in } Z)[T(x) \to P(x)]$ (3) $(\forall x \text{ in } Z)[A(x) \land \neg P(x)]$ (4) $T(a) \rightarrow P(a)$ (2), Existential Instantiation (5) $A(a) \wedge \neg P(a)$ (3), Universal Instantiation (6) $\neg P(a)$ (5), Simplification $(7) \neg T(a)$ (4), (6), Modus Tollens(8) $(A(a) \to R(a)) \lor T(a)$ (1), Universal Instantiation (9) $A(a) \rightarrow R(a)$ (7), (8), Modus Tollendo Ponens (10) A(a)(5), Simplification (11) R(a)(9), (10), Modus Ponens(11), Existential Generalization (12) $(\exists x \text{ in } Z)[R(x)]$

Exercise 1.4.1

Part (4)

We know L is true from the third premise, and combined with the first premise this gives M. Then $M \vee N$ is true, and therefore $L \to K$. We already know that L is true, and thus K must be true as well.

Part (6)

We are given that $\neg D$ is true, and therefore $\neg D \lor A$ is true, which lets us conclude $\neg \neg C$. This is the same as C, which gives $\neg A$, which in turn yields $B \to \neg C$. But we already know that C is true, and therefore B must be false.

Exercise 2.2.6

Theorem. Let a, b, c, m and n be integers. If a|b and a|c then a|(bm + cn).

Proof. Suppose that a|b and a|c. Then there must exist integers r and s so that b = ar and c = as. Then bm + cn = arm + asn = a(rm + sn), so a|(bm + cn) as well.

Here is a two-column proof of the same theorem:

(1) $a b$	
(2) $a c$	
(3) $(\exists x \text{ in } \mathbb{Z})(ax = b)$	(1), Definition of Divides
(4) $(\exists x \text{ in } \mathbb{Z})(ax = c)$	(2), Definition of Divides
(5) $ar = b$	(3), Existential Instantiation
(6) $as = c$	(4), Existential Instantiation
(7) $arm = bm$	(5), Multiplying by m
(8) $asn = cn$	(6), Multiplying by n
(9) arm + asn = bm + cn	(7), (8), Addition of equations
$(10) \ a(rm+sn) = bm+cn$	(9) Distributive Law
(11) $(\exists x \text{ in } \mathbb{Z})(ax = bm + cn)$	(10), Existential Generalization
$(12) \ a (bm+cn)$	(11), Definition of Divides

Exercise 2.2.7

Theorem. Let a, b, c, and d be integers. If a|b and c|d then ac|bd.

Proof. Suppose that a|b and c|d, and let u and v be integers so that b = au and d = cv. Then bd = aucv = (ac)(uv), which proves that ac|bd.

Here is a two-column proof of the same theorem:

(1) $a b$	
(2) $c d$	
(3) $(\exists x \text{ in } \mathbb{Z})(ax = b)$	(1), Definition of Divides
(4) $(\exists x \text{ in } \mathbb{Z})(cx = d)$	(2), Definition of Divides
(5) $au = b$	(3), Existential Instantiation
(6) $cv = d$	(4), Existential Instantiation
(7) (au)(cv) = bd	(5), (6), Multiplication of equations
(8) (ac)(uv) = bd	(7), Associativity and Commutativity
(9) $(\exists x \text{ in } \mathbb{Z})[(ac)x = bd]$	(8), Existential Generalization
$(10) \ ac bd$	(9), Definition of Divides