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Number theory is the branch of mathematics concerned with the properties of the positive integers, such

as divisibility, prime numbers, and so forth. It is an ancient subject: four volumes of Euclid’s Elements were

devoted entirely to number theory, and Greek mathematicians were arguably as interested in the theory of

numbers as they were in geometry.

Note. Number theory is primarily concerned with the properties of integers, with real numbers playing at

best an ancillary role. For that reason, all variables in these notes should be assumed to represent integers

unless otherwise noted.

1 Divisors

Definition 1.1. We say that a divides b, denoted a|b, if

b = na

for some integer n.

If a divides b, then b is said to be divisible by a. The number a is called a divisor (or factor) of b,

and b is called a multiple of a.

Example 1.2. Since 5× 7 = 35, we know that 5|35 and 7|35. The divisors of 35 are {±1,±5,±7,±35}, and
the multiples of 5 are {. . . ,−10,−5, 0, 5, 10, . . .}.

Note that the definition of divisibility does not exclude 0. In fact, every integer divides 0, since 0 = 0a

for any integer a. This is an exception to the general rule that a|b implies |a| ≤ |b|.
The relation | satisfies a large number of identities. Here are a few of the more important ones:

Proposition 1.3.

1. If a|b and b|c, then a|c.

2. If a|b and c|d, then ac|bd.

3. If a|b and a|c, then a|(b+ c).

Proof.

1. If b = ma and c = nb, then c = (mn)a.

2. If b = ma and d = nc, then bd = (mn)(ac).

3. If b = ma and c = na, then b+ c = (m+ n)a.
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A natural way to compare two numbers is to compare their divisors:

Definition 1.4. The greatest common divisor of a and b is the greatest integer that divides both a and

b.

We shall write gcd(a, b) for the greatest common divisor of a and b. For example:

gcd(12, 20) = 4, gcd(7, 12) = 1, and gcd(0, 6) = 6.

Note that gcd(0, a) = a for any nonzero integer a. (The greatest common divisor of 0 and 0 is undefined.)

Since 1 divides every integer, the greatest common divisor of a and b is always at least 1. If it is equal

to 1, it means that a and b have no other positive factors in common. In this case, we say that a and b are

relatively prime (or coprime).

2 Primes

Definition 2.1. A number p > 1 is prime if its only positive factors are 1 and p.

Any number a > 1 that is not prime is composite. This means that a can be written as a product

a = bc

where both b and c are greater than one. This is called factoring.

Using repeated factoring, any composite number can be expressed as a product of primes. For example,

suppose that we factor the number 720 as follows:
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Since 10 and 72 are both composite, we can factor these as well:
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At this point, we have broken our number into four pieces, whose product (2 × 5 × 9 × 8) is 720. Two of

these pieces (the 2 and the 5) are prime, but the other two can be factored further:
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This is called a factor tree. The “leaves” of the tree are prime numbers that multiply to 720:

2× 5× 3× 3× 2× 2× 2 = 720.

This is a prime factorization of 720. The same procedure will produce a prime factorization of any

composite number.

Of course, none of this discussion has been rigorous. If we want to prove that every composite number

can be factored into primes, we must use induction:

Prime Factorization Theorem. Every composite number can be expressed as a product of primes.

Proof. Let a be a positive integer. We must prove that if a is composite, then a can be expressed as a

product of primes. We proceed by induction on a.

Base Case: If a = 1, then a is not composite, so the statement is vacuously true.

Induction Step: Now suppose that a > 1, and assume that the statement holds for all positive integers

less than a. If a is composite, then a can be written as a product

a = bc

where 1 < b < a and 1 < c < a. If these numbers are prime, we are done. If only one of these numbers is

prime, say b, then the other number c must be composite. By our induction hypothesis, c can be expressed

as a product of primes p1 × · · · × pn, and therefore a = b× p1 × · · · × pn.

Finally, if both b and c are composite, then each can be written as a product of primes:

b = p1 × · · · × pm and c = q1 × · · · × qn.

In this case, a is the product of all of these:

a = p1 × · · · × pm × q1 × · · · × qn

As you are no doubt aware, the prime factorization of a number is actually unique up to reordering of

the factors. This statement is known as the fundamental theorem of arithmetic. You should not fool

yourself into thinking that the fundamental theorem of arithmetic is trivial—excluding the formula for the

area of a circle, it is probably the deepest theorem that you learned in elementary school.

The proof of the fundamental theorem of arithmetic requires the following key fact about prime numbers:

Euclid’s Lemma. If p is prime and p|ab, then either p|a or p|b.

This lemma does not follow in any direct way from the definition of a prime number, and we are not currently

in a good position to prove it. Instead, we must begin by developing some additional machinery. We will

return to the proof of the fundamental theorem of arithmetic in section 5.

3 Division with Remainders

Definition 3.1. Let a and b be integers, with b > 0. The integer quotient of a and b is the greatest

integer q for which qb ≤ a
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If a is not divisible by b, then the product qb will be less than a. The difference r = a− qb is called the

remainder of the division, and we write

a÷ b = q R r

to mean that the division of a by b has quotient q and remainder r. For example,

20÷ 7 = 2 R 6 and −20÷ 7 = −3 R 1.

Note that the remainder is always nonnegative, and is always less than b.

There is no standard notation in mathematics for the integer quotient and remainder. The quotient can

be written as ⌊a/b⌋ (the greatest integer less than or equal to a/b), which is clunky but sufficient. There are

several common notations for the remainder:

a mod b mod(a, b) a% b

The third is from the C programming language; it is rare among mathematicians, but popular in computer

science.

4 Bézout’s Identity

Definition 4.1. Let a and b be integers. A linear combination of a and b is any integer of the form

ma + nb

where m and n are integers.

For example, 26 is a linear combination of 6 and 10, since 26 = 2 · 10 + 1 · 6. Though it is less obvious, 2

is also a linear combination of 6 and 10, since

2 = −3 · 6 + 2 · 10.

It follows that any even number can be expressed as a linear combination of 6 and 10.

Bézout’s Identity. Let a and b be nonzero integers, and let d = gcd(a, b). Then there exist integers m and

n such that

ma + nb = d.

That is, the greatest common divisor of a and b can always be expressed as a linear combination of a and b.

This is particular surprising when a and b are relatively prime, in which case ma+ nb = 1.

Proof. Let x be the smallest positive integer that can be expressed as a linear combination of a and b. We

know that x is a multiple of d, since a and b are both multiples of d. We claim that x = d.

Suppose to the contrary that x > d. Then x cannot be a common divisor of a and b, so either x - a or

x - b. Without loss of generality, suppose that x - a. Then

a÷ x = q R r

where the remainder r is positive. But r = a − qx, so r can be written as a linear combination of a and b.

This is a contradiction, since r is necessarily less than x.

The numbers m and n for which ma+ nb = gcd(a, b) are known as Bézout coefficients.
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Corollary 4.2. Let a, b, and c be nonzero integers. Then c can be written as a linear combination of a and

b if and only if c is a multiple of gcd(a, b).

We can use Bézout’s identity to prove Euclid’s lemma:

Euclid’s Lemma. If p is prime and p|ab, then either p|a or p|b.

Proof. Suppose that p|ab and p - a. We must prove that p|b.
Since p - a and p is prime, the greatest common divisor of p and a must be 1. Therefore, by Bézout’s

identity, there exist integers m and n such that

ma + np = 1.

Multiplying through by b gives

mab + npb = b.

Since p|ab, the left side of this equation is divisible by p, and therefore p|b.

5 The Fundamental Theorem of Arithmetic

We are now in a position to prove the fundamental theorem of arithmetic. We begin by proving a slightly

stronger version of Euclid’s lemma:

Generalized Euclid’s Lemma. If p is prime and p|a1 · · · an, then p|ai for some i.

Proof. This is a straightforward induction. The base case n = 2 is Euclid’s lemma. For n > 2, observe that

a1 · · · an = (a1 · · · an−1)an.

By Euclid’s lemma, either p|a1 · · · an−1 or p|an. In the first case, it follows from our inductive hypothesis

that p|ai for some i ≤ n− 1.

The next lemma tells us exactly which primes must appear in a prime factorization:

Lemma 5.1. Let p and q1, . . . , qn be primes. Then p|q1 · · · qn if and only if p ∈ {q1, . . . , qn}.

Proof. If p ∈ {q1, . . . , qn}, then clearly p|q1 · · · qn. Conversely, if p|q1 · · · qn, then by the previous lemma p|qi
for some i. Since qi is prime and p ̸= 1, we deduce that p = qi.

The Fundamental Theorem of Arithmetic. Let a be composite. Then there exists a unique sequence of

primes p1 ≤ · · · ≤ pn such that a = p1 · · · pn.

In the statement of this theorem, we have added the artificial requirement that p1 ≤ · · · ≤ pn to eliminate

any ambiguity regarding the ordering of the primes in the factorization of a.
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Proof. The prime factorization theorem establishes existence. For uniqueness, suppose that

p1 · · · pm = q1 · · · qn

where p1 ≤ · · · ≤ pm and q1 ≤ · · · ≤ qn are primes. We wish to prove that m = n and pi = qi for each i.

Without loss of generality, we may assume that m ≤ n. We proceed by induction on m.

Base Case: For m = 1, the equation is p1 = q1 · · · qn. Since p1 is prime, the only possibility is that n = 1,

with p1 = q1.

Induction Step: For m > 1, it follows from the previous lemma that pm is the largest prime divisor

of p1 · · · pm, and qn is the largest prime divisor of q1 · · · qn. Since p1 · · · pm = q1 · · · qn, we conclude that

pm = qn. Dividing these out leaves

p1 · · · pm−1 = q1 · · · qn−1.

The rest now follows from our induction hypothesis.

6 Exercises

1. Compute the following greatest common divisors.

(a) gcd(120, 75)

(b) gcd(32, 45)

(c) gcd(0, 8)

2. Find the prime factorization of the following numbers.

(a) 210

(b) 330

(c) 365

3. Let a, b ∈ Z. Prove that gcd(a, b) = gcd(a+ b, b).

4. Let a, b ∈ Z, and let p be a prime number. Suppose that ab ≡ 0 (mod p). Prove that either

a ≡ 0 (mod p) or b ≡ 0 (mod p).

5. Let p be a prime number.

(a) Let a, b ∈ Z. Suppose that p|b, p ̸ |a, and a|b. Prove that p | ba .

(b) Let k ∈ Z. Suppose that 0 < k < p. Use part (a) to prove that the binomial coefficient

(
p

k

)
is a

multiple of p.

6. Let p be a prime number. Use induction to prove that

np ≡ n (mod p)

for all n ∈ N. (Hint: Use the Binomial Theorem and part (a)). This result is known as Fermat’s

Little Theorem.
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7. The greatest common divisor can be defined for more than two integers at a time:

Definition 6.1. Let a1, . . . , an be integers. The greatest common divisor of a1, . . . , an, denoted

gcd(a1, . . . , an), is the greatest integer that divides every ai.

Prove that gcd(a1, . . . , an, b) = gcd(gcd(a1, . . . , an), b).

8. We can also define linear combinations of more than two integers:

Definition 6.2. A linear combination of integers a1, . . . , an is any number of the form

m1a1 + · · ·+mnan

where the coefficients m1, . . . ,mn are integers.

For n ≥ 2, use induction to prove that gcd(a1, . . . , an) can be expressed as a linear combination of

a1, . . . , an.
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