Practice Problems for Final

Practice Problems from Textbook:

Chapter 4:	Chapter 5:	Chapter 6
$\{$ 4.1 # 1, 3	$\S 5.1 \# 3$	§ 6.3 $\#$ 1 (parts 3, 4, 6)
$\{ 4.2 \ \# \ 1 \ (parts \ 1, \ 3) \}$	$\S 5.2 \ \# 1, 2, 3$	
$\S 4.3 \# 1, 2$	$\S 5.3 \# 1$	
$\{4.4 \ \# \ 1, \ 2$		

Additional Problems:

- 1. (a) Consider the function $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + 3$. What is the range of f? What is f([-1,2])? What is $f^{-1}([-3,4])$?
 - (b) Consider the function $g: [-1,5] \to \mathbb{R}$ defined by g(x) = 3x 5. What is the range of g? What is g([1,2])? What is $g^{-1}([7,12])$?
 - (c) Consider the function $h: \mathbb{N} \to \mathbb{N}$ defined by h(n) = n + 2. What is the range of h? What is $h(\{1, 2, 3\})$? What is $h^{-1}(\{1, 3, 5, 7\})$?
- 2. Let $f, g \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \ge 0\\ x+5, & \text{if } x < 0 \end{cases} \qquad g(x) = \begin{cases} 3x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}$$

Find $f \circ g$ and $g \circ f$.

- 3. (a) Consider the function $f \colon \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 5. Prove that f is bijective.
 - (b) Consider the function $g: (0, \infty) \to \mathbb{R}$ defined by g(x) = 1/x. Prove that g is injective. Is g surjective? Why or why not?
 - (c) Consider the function $h: \mathbb{R} \to [1, \infty)$ defined by $h(x) = x^2 + 1$. Prove that h is surjective. Is h injective? Why or why not?

- 4. Solve each of the following equations in the given set \mathbb{Z}_n . (In some cases, there may be no solutions.)
 - (a) [5] + x = [3] in \mathbb{Z}_8
 - (b) $[3] \cdot x = [2]$ in \mathbb{Z}_5
 - (c) $[2] \cdot x = [3]$ in \mathbb{Z}_4
 - (d) $[3] \cdot x = [6]$ in \mathbb{Z}_9
- 5. Let \sim be the relation on $\mathbb{R}^2 \{(0,0)\}$ defined by $(x,y) \sim (w,z)$ if and only if there exists $k \in \mathbb{R} \{0\}$ such that x = kw and y = kz. Prove that \sim is an equivalence relation.
- 6. Let \sim be the relation on \mathbb{N} defined by $a \sim b$ if and only if there exists $n \in \mathbb{Z}$ such that $a = 2^n b$, for all $a, b \in \mathbb{N}$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Find the equivalence classes [0] and [3].
- 7. Use induction to prove that the following formulas hold for all $n \in \mathbb{N}$.
 - (a) $2+5+8+11+14+\dots+(3n-1)=\frac{(n)(3n+1)}{2}$
 - (b) $2 + 4 + 8 + 16 + \dots + 2^n = 2^{n+1} 2$