
Answers to Practice Problems

Practice Problems from Textbook:

Chapter 4:

4.1.1. (1), (3), and (6) are functions.

4.1.3. (i) and (iv) represent functions.

4.2.1. (1) [−5,∞)

(3) (3,∞)

4.3.1. (1) (f ◦ g)(x) = esinx

(g ◦ f)(x) = sin(ex)

(2) (f ◦ g)(x) = x−21

(g ◦ f)(x) = x−21

(3) (f ◦ g)(x) = x

(g ◦ f)(x) = x

(4) (f ◦ g)(x) = ⌈x⌉
(g ◦ f)(x) = ⌊x⌋

4.3.2. (1) g(x) = x+ 7

h(x) = 3
√
x

(2) g(x) = 3
√
x

h(x) = x+ 7

(3) One such pair of functions h and g is:

g(x) =

{
x3, if 0 ≤ x

x2, if x < 0
h(x) = x2

(4) One such pair of functions h and g is

g(x) =

{
x3, if 0 ≤ x

x/2, if x < 0
h(x) =

{
x, if 0 ≤ x

2x, if x < 0
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4.4.1. (1) Theorem. Let t : (1,∞) → R be defined by t(x) = lnx for all x ∈ (1,∞). The

function t is injective. It is not surjective.

Proof. First, we will show that t is injective. Let x, y ∈ (1,∞). Suppose that

t(x) = t(y). Then ln(x) = ln(y). Thus, x = y, so t is injective.

Note that there is no x ∈ (1,∞) such that t(x) = −1 since ln(x) is always positive

for x > 1. Thus, t is not surjective.

(2) Theorem. Let s : R → R be defined by s(x) = x4− 5 for all x ∈ R. The function

s is neither injective nor bijective.

Proof. Note that s(1) = −4 and s(−1) = −4. Thus, s is not injective. Also, note

that there is no x ∈ R such that s(x) = −7. Thus, s is not surjective.

(3) Theorem. Let g : [0,∞) → [0, 1) be defined by g(x) = x
1+x

for all x ∈ [0,∞).

The function g is both injective and surjective.

Proof. First, we will show that g is injective. Let x, y ∈ [0,∞). Suppose that

g(x) = g(y). Then x
1+x

= y
1+y

. Cross-multiplying, we have that x(1+y) = y(1+x).

Thus, x+xy = y+xy. Subtracting xy from both sides, we get that x = y. Thus,

g is injective.

Next, we will show that g is surjective. Let y ∈ [0, 1). Let x = y
1−y

. (Note that x

exists since 0 ≤ y < 1.) Then, g(x) = g
(

y
1−y

)
=

y/(1− y)

1 + y/(1− y)
. If we multiply

the top and bottom of this fraction by 1− y, we get:

g(x) =
y

1− y + y
=

y

1
= y

Thus, g is surjective.

(4) Theorem. Let k : R2 → R be defined by k ((x, y)) = x2 + y2 for all (x, y) ∈ R2.

The function k is neither injective nor surjective.

Proof. Note that k ((−1, 0)) = 1 and k ((1, 0)) = 1. Thus, k is not injective. Also,

note that there is no (x, y) ∈ R2 such that k ((x, y)) = −1, since x2 + y2 is always

positive. Thus, k is not surjective.

2



(5) Theorem. Let Q : N → P(N) be defined by Q(n) = {1, 2, . . . , n} for all n ∈ N.
The function Q is injective. It is not surjective.

Proof. First, we will show that Q is injective. Let a, b ∈ N. Suppose that

Q(a) = Q(b). Then, {1, 2, . . . , a} = {1, 2, . . . , b}. Since these two sets are equal,

we must have a ∈ {1, 2, . . . , b} and b ∈ {1, 2, . . . , a}. Thus, it must be the case

that 1 ≤ a ≤ b and 1 ≤ b ≤ a. Since a ≤ b and b ≤ a, it follows that a = b. Thus,

Q is injective.

Note that the set {2} is in P(N), but there is no n ∈ N such that Q(n) = {2}.
Thus, Q is not surjective.

4.4.2. (1) Injective, not surjective.

(2) Injective and surjective.

(3) Injective, not surjective.

(4) Injective and surjective.

Chapter 5:

5.1.3. (1) Symmetric, not reflexive and not transitive.

(2) Reflexive and transitive, not symmetric.

(3) Transitive, not reflexive and not symmetric.

(4) Reflexive, symmetric, and transitive.

(5) Symmetric, not reflexive and not transitive.

(6) Not reflexive, not symmetric, and not transitive.

(7) Reflexive and transitive, not symmetric.

5.2.1. (1), (4), and (5) are true. (2) and (3) are false.

5.2.2. (1) x = [5]

(2) x = [9]

(3) no solutions

(4) x = [2] or [7]

(5) x = [4]

5.2.3. One example is n = 5, a = 2, b = 3. Then a2 = 4 and b2 = 9, and 4 ≡ 9 (mod 5) but

2 ̸≡ 3 (mod 5).

5.3.1 (1), (3), (5), (6) are equivalence relations
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Chapter 6:

6.3.1 (3) Theorem. Let n ∈ N. Then, 13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1, so the formula

holds in this case.

Induction Step Now suppose that the formula holds for some n ∈ N. Then

13 + 23 + · · ·+ n3 + (n+ 1)3 =
n2(n+ 1)2

4
+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)3

4

=
(n+ 1)2(n2 + 4(n+ 1))

4

=
(n+ 1)2(n2 + 4n+ 4)

4

=
(n+ 1)2(n+ 2)2

4

so the formula holds for n+ 1 as well.

Therefore, by induction, the formula holds for all n ∈ N.

(4) Theorem. Let n ∈ N. Then, 13 + 33 + · · ·+ (2n− 1)3 = n2(2n2 − 1).

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1, so the formula

holds in this case.
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Induction Step Now suppose that the formula holds for some n ∈ N. Then

13 + 33 + · · ·+ (2n− 1)3 + (2(n+ 1)− 1)3 = n2(2n2 − 1) + (2(n+ 1)− 1)3

= n2(2n2 − 1) + (2n+ 1)3

= 2n4 − n2 + (8n3 + 12n2 + 6n+ 1)

= 2n4 + 8n3 + 11n2 + 6n+ 1

= (n+ 1)(2n3 + 6n2 + 5n+ 1)

= (n+ 1)2(2n2 + 4n+ 1)

= (n+ 1)2
(
2(n+ 1)2 − 1

)

so the formula holds for n+ 1 as well.

Therefore, by induction, the formula holds for all n ∈ N.

(6) Theorem. Let n ∈ N. Then,
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1/2, so the

formula holds in this case.

Induction Step Now suppose that the formula holds for some n ∈ N. Then

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
+

1

(n+ 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
n(n+ 2) + 1

(n+ 1)(n+ 2)

=
n2 + 2n+ 1

(n+ 1)(n+ 2)

=
(n+ 1)2

(n+ 1)(n+ 2)

=
n+ 1

n+ 2

so the formula holds for n+ 1 as well.
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Therefore, by induction, the formula holds for all n ∈ N.

Additional Problems:

1. (a) The range of f is [3,∞).

f ([−1, 2]) = [3, 7]

f−1 ([−3, 4]) = [−1, 1]

(b) The range of g is [−8, 10].

g ([1, 2]) = [−2, 1]

g−1 ([7, 12]) = [4, 5]

(c) The range of h is {3, 4, 5, 6, 7, 8, 9, . . . } = {n ∈ N |n ≥ 3}
h ({1, 2, 3}) = {3, 4, 5}
h−1 ({1, 3, 5, 7}) = {1, 3, 5}

2. The function f ◦ g is:

(f ◦ g)(x) =

{
9x2, if x ≥ 0

x2, if x < 0

The function g ◦ f is:

(g ◦ f)(x) =


3x2, if x ≥ 0

3x+ 15, if −5 ≤ x < 0

−x− 5 if x < −5

3. (a) Theorem. Let f : R → R be the function defined by f(x) = 2x+5. The function

f is bijective.

Proof. First, we will prove that f is injective. Let x, y ∈ R. Suppose that

f(x) = f(y). Then 2x + 5 = 2y + 5. Thus, 2x = 2y, so x = y. Thus, f is

injective.

Now, we will prove that f is surjective. Let y ∈ R. Let x = y−5
2
. Then

f(x) = f
(
y−5
2

)
= 2

(
y−5
2

)
+ 5 = y − 5 + 5 = y. Thus, f is surjective. Since f is

injective and surjective, f is bijective.

(b) Theorem. Let g : (0,∞) → R be the function defined by g(x) = 1/x. The func-

tion g is injective.

Proof. Let x, y ∈ (0,∞). Suppose that g(x) = g(y). Then 1/x = 1/y. Cross-

multiplying, we get that y = x. Thus, g is injective.

6



The function g is not surjective, because there is no x ∈ (0,∞) such that g(x) = 0.

(c) Theorem. Let h : R → [1,∞) be the function defined by h(x) = x2 + 1. The

function h is surjective.

Proof. Let y ∈ [1,∞). Let x =
√
y − 1. (Since y ≥ 1, we have that y − 1 ≥ 0, so

x exists.) Then, h(x) = h
(√

y − 1
)
=

(√
y − 1

)2
+ 1 = (y − 1) + 1 = y. Thus, h

is surjective.

The function h is not injective, because h(−1) = 2 and h(1) = 2.

4. (a) x = [6]

(b) x = [4]

(c) no solutions

(d) x = [2] or x = [5] or x = [8]

5. Theorem. Let ∼ be the relation on R2 − {(0, 0)} defined by (x, y) ∼ (w, z) if and

only if there exists k ∈ R − {0} such that x = kw and y = kz. The relation ∼ is an

equivalence relation.

Proof. First, we will show that ∼ is reflexive. Let (x, y) ∈ R2−{(0, 0)}. Then, x = 1 ·x
and y = 1 · y, so (x, y) ∼ (x, y). Thus, ∼ is reflexive.

Next, we will show that ∼ is symmetric. Let (x, y), (w, z) ∈ R2 − {(0, 0)}. Suppose

that (x, y) ∼ (w, z). Then, there exists k ∈ R − {0} such that x = kw and y = kz.

Then, w = (1/k)x and z = (1/k)y. Since 1/k ∈ R− {0}, we have that (w, z) ∼ (x, y).

Thus, ∼ is symmetric.

Finally, we will show that ∼ is transitive. Let (x1, y1), (x2, y2), (x3, y3) ∈ R2 −{(0, 0)}.
Suppose that (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3). Then, there exists k, j ∈ R−{0}
so that x1 = kx2, y1 = ky2, x2 = jx3, and y2 = jy3. Substituting, x2 = jx3 into the

equation x1 = kx2, we get that x1 = k(jx3). Thus, x1 = (kj)x3. Substituting y2 = jy3

into the equation y1 = ky2, we get that y1 = k(jy3). Thus, y1 = (kj)y3. Since

kj ∈ R − {0}, we have that (x1, y1) ∼ (x3, y3). Thus, ∼ is transitive. Since ∼ is

reflexive, symmetric, and transitive, ∼ is an equivalence relation.

7



6. (a) Theorem. Let ∼ be the relation on N defined by a ∼ b if and only if there exists

n ∈ Z such that a = 2nb, for all a, b ∈ N. The relation ∼ is an equivalence

relation.

Proof. First, we will show that ∼ is reflexive. Let a ∈ N. Then, a = 20a. Thus,

a ∼ a.

Next, we will show that ∼ is symmetric. Let a, b ∈ N. Suppose that a ∼ b. Then,

there exits n ∈ Z such that a = 2nb. Then, b = 2−na. Since −n is an integer, we

have that b ∼ a. Thus, ∼ is symmetric.

Finally, we will show that ∼ is transitive. Let a, b, c ∈ N. Suppose that a ∼ b

and b ∼ c. Then there exists n,m ∈ Z such that a = 2nb and b = 2mc. Then,

by substitution, a = 2n2mc. Thus, a = 2n+mc. Since n +m is an integer, a ∼ c.

Thus, ∼ is transitive. Since ∼ is reflexive, symmetric, and transitive, ∼ is an

equivalence relation.

(b) [0] = {0}

[3] =

{
. . . ,

3

23
,
3

22
,
3

2
, 3, 3 · 2, 3 · 22, 3 · 23, . . .

}
7. (a) Theorem. Let n ∈ N. Then, 2 + 5+ 8+ 11+ 14+ · · ·+ (3n− 1) =

(n)(3n+ 1)

2
.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 2, so the formula

holds in this case.
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Induction Step Now suppose that the formula holds for some n ∈ N. Then

2 + 5 + 8 + · · ·+ (3n− 1) + (3(n+ 1)− 1) =
n(3n+ 1)

2
+ (3(n+ 1)− 1)

=
n(3n+ 1)

2
+ 3n+ 2

=
n(3n+ 1) + 2(3n+ 2) ]

2

=
3n2 + n+ 6n+ 4

2

=
3n2 + 7n+ 4

2

=
(n+ 1)(3n+ 4)

2

=
(n+ 1) (3(n+ 1) + 1)

2

so the formula holds for n+ 1 as well.

Therefore, by induction, the formula holds for all n ∈ N.

(b) Theorem. Let n ∈ N. Then, 2 + 4 + 8 + 16 + · · ·+ 2n = 2n+1 − 2.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 2, so the formula

holds in this case.

Induction Step Now suppose that the formula holds for some n ∈ N. Then

2 + 4 + 8 + 16 + · · ·+ 2n + 2n+1 = 2n+1 − 2 + 2n+1

= 2 · 2n+1 − 2

= 2n+2 − 2

so the formula holds for n+ 1 as well.

Therefore, by induction, the formula holds for all n ∈ N.

9


