Answers to Practice Problems

Practice Problems from Textbook:

Chapter 4:

- 4.1.1.(1), (3), and (6) are functions.
- 4.1.3. (i) and (iv) represent functions.

4.2.1. (1)
$$[-5,\infty)$$

(3) $(3,\infty)$

4.3.1. (1)
$$(f \circ g)(x) = e^{\sin x}$$

 $(g \circ f)(x) = \sin(e^x)$

(2)
$$(f \circ g)(x) = x^{-21}$$

 $(g \circ f)(x) = x^{-21}$

$$(3) \quad (f \circ g)(x) = x$$
$$(g \circ f)(x) = x$$
$$(4) \quad (f \circ g)(x) = \lceil x \rceil$$

$$(g \circ f)(x) = \lfloor x \rfloor$$

4.3.2. (1)
$$g(x) = x + 7$$

 $h(x) = \sqrt[3]{x}$

- (2) $g(x) = \sqrt[3]{x}$ h(x) = x + 7
- (3) One such pair of functions h and g is:

$$g(x) = \begin{cases} x^3, & \text{if } 0 \le x \\ x^2, & \text{if } x < 0 \end{cases} \qquad h(x) = x^2$$

(4) One such pair of functions h and g is

$$g(x) = \begin{cases} x^3, & \text{if } 0 \le x \\ x/2, & \text{if } x < 0 \end{cases} \qquad h(x) = \begin{cases} x, & \text{if } 0 \le x \\ 2x, & \text{if } x < 0 \end{cases}$$

4.4.1. (1) **Theorem.** Let $t: (1, \infty) \to \mathbb{R}$ be defined by $t(x) = \ln x$ for all $x \in (1, \infty)$. The function t is injective. It is not surjective.

Proof. First, we will show that t is injective. Let $x, y \in (1, \infty)$. Suppose that t(x) = t(y). Then $\ln(x) = \ln(y)$. Thus, x = y, so t is injective.

Note that there is no $x \in (1, \infty)$ such that t(x) = -1 since $\ln(x)$ is always positive for x > 1. Thus, t is not surjective.

(2) **Theorem.** Let $s: \mathbb{R} \to \mathbb{R}$ be defined by $s(x) = x^4 - 5$ for all $x \in \mathbb{R}$. The function s is neither injective nor bijective.

Proof. Note that s(1) = -4 and s(-1) = -4. Thus, s is not injective. Also, note that there is no $x \in \mathbb{R}$ such that s(x) = -7. Thus, s is not surjective.

(3) **Theorem.** Let $g: [0, \infty) \to [0, 1)$ be defined by $g(x) = \frac{x}{1+x}$ for all $x \in [0, \infty)$. The function g is both injective and surjective.

Proof. First, we will show that g is injective. Let $x, y \in [0, \infty)$. Suppose that g(x) = g(y). Then $\frac{x}{1+x} = \frac{y}{1+y}$. Cross-multiplying, we have that x(1+y) = y(1+x). Thus, x + xy = y + xy. Subtracting xy from both sides, we get that x = y. Thus, g is injective.

Next, we will show that g is surjective. Let $y \in [0, 1)$. Let $x = \frac{y}{1-y}$. (Note that x exists since $0 \le y < 1$.) Then, $g(x) = g\left(\frac{y}{1-y}\right) = \frac{y/(1-y)}{1+y/(1-y)}$. If we multiply the top and bottom of this fraction by 1 - y, we get:

$$g(x)=\frac{y}{1-y+y}=\frac{y}{1}=y$$

Thus, g is surjective.

(4) **Theorem.** Let $k: \mathbb{R}^2 \to \mathbb{R}$ be defined by $k((x,y)) = x^2 + y^2$ for all $(x,y) \in \mathbb{R}^2$. The function k is neither injective nor surjective.

Proof. Note that k((-1,0)) = 1 and k((1,0)) = 1. Thus, k is not injective. Also, note that there is no $(x, y) \in \mathbb{R}^2$ such that k((x, y)) = -1, since $x^2 + y^2$ is always positive. Thus, k is not surjective.

(5) **Theorem.** Let $Q: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ be defined by $Q(n) = \{1, 2, ..., n\}$ for all $n \in \mathbb{N}$. The function Q is injective. It is not surjective.

Proof. First, we will show that Q is injective. Let $a, b \in \mathbb{N}$. Suppose that Q(a) = Q(b). Then, $\{1, 2, \ldots, a\} = \{1, 2, \ldots, b\}$. Since these two sets are equal, we must have $a \in \{1, 2, \ldots, b\}$ and $b \in \{1, 2, \ldots, a\}$. Thus, it must be the case that $1 \leq a \leq b$ and $1 \leq b \leq a$. Since $a \leq b$ and $b \leq a$, it follows that a = b. Thus, Q is injective.

Note that the set $\{2\}$ is in $\mathcal{P}(\mathbb{N})$, but there is no $n \in \mathbb{N}$ such that $Q(n) = \{2\}$. Thus, Q is not surjective.

- 4.4.2. (1) Injective, not surjective. (3) Injective, not surjective.
 - (2) Injective and surjective. (4) Injective and surjective.

Chapter 5:

- 5.1.3. (1) Symmetric, not reflexive and not transitive.
 - (2) Reflexive and transitive, not symmetric.
 - (3) Transitive, not reflexive and not symmetric.
 - (4) Reflexive, symmetric, and transitive.
 - (5) Symmetric, not reflexive and not transitive.
 - (6) Not reflexive, not symmetric, and not transitive.
 - (7) Reflexive and transitive, not symmetric.
- 5.2.1. (1), (4), and (5) are true. (2) and (3) are false.
- 5.2.2. (1) x = [5] (4) x = [2] or [7]
 - (2) x = [9] (5) x = [4]
 - (3) no solutions
- 5.2.3. One example is n = 5, a = 2, b = 3. Then $a^2 = 4$ and $b^2 = 9$, and $4 \equiv 9 \pmod{5}$ but $2 \not\equiv 3 \pmod{5}$.
- 5.3.1 (1), (3), (5), (6) are equivalence relations

Chapter 6:

6.3.1 (3) **Theorem.** Let $n \in \mathbb{N}$. Then, $1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1, so the formula holds in this case.

Induction Step Now suppose that the formula holds for some $n \in \mathbb{N}$. Then

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$
$$= \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4}$$
$$= \frac{(n+1)^{2}(n^{2} + 4(n+1))}{4}$$
$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$
$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$

so the formula holds for n + 1 as well.

Therefore, by induction, the formula holds for all $n \in \mathbb{N}$.

(4) **Theorem.** Let $n \in \mathbb{N}$. Then, $1^3 + 3^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1)$.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1, so the formula holds in this case.

Induction Step Now suppose that the formula holds for some $n \in \mathbb{N}$. Then

$$1^{3} + 3^{3} + \dots + (2n-1)^{3} + (2(n+1)-1)^{3} = n^{2}(2n^{2}-1) + (2(n+1)-1)^{3}$$

$$= n^{2}(2n^{2}-1) + (2n+1)^{3}$$

$$= 2n^{4} - n^{2} + (8n^{3} + 12n^{2} + 6n + 1)$$

$$= 2n^{4} + 8n^{3} + 11n^{2} + 6n + 1$$

$$= (n+1)(2n^{3} + 6n^{2} + 5n + 1)$$

$$= (n+1)^{2}(2n^{2} + 4n + 1)$$

$$= (n+1)^{2} (2(n+1)^{2} - 1)$$

so the formula holds for n + 1 as well.

Therefore, by induction, the formula holds for all $n \in \mathbb{N}$.

(6) **Theorem.** Let
$$n \in \mathbb{N}$$
. Then, $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 1/2, so the formula holds in this case.

Induction Step Now suppose that the formula holds for some $n \in \mathbb{N}$. Then

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$
$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$
$$= \frac{(n+1)^2}{(n+1)(n+2)}$$
$$= \frac{n+1}{n+2}$$

so the formula holds for n + 1 as well.

Additional Problems:

- 1. (a) The range of f is $[3, \infty)$. f([-1, 2]) = [3, 7] $f^{-1}([-3, 4]) = [-1, 1]$
 - (b) The range of g is [-8, 10]. g([1, 2]) = [-2, 1] $g^{-1}([7, 12]) = [4, 5]$
 - (c) The range of h is $\{3, 4, 5, 6, 7, 8, 9, ...\} = \{n \in \mathbb{N} \mid n \ge 3\}$ $h(\{1, 2, 3\}) = \{3, 4, 5\}$ $h^{-1}(\{1, 3, 5, 7\}) = \{1, 3, 5\}$
- 2. The function $f \circ g$ is:

$$(f \circ g)(x) = \begin{cases} 9x^2, & \text{if } x \ge 0\\ x^2, & \text{if } x < 0 \end{cases}$$

The function $g \circ f$ is:

$$(g \circ f)(x) = \begin{cases} 3x^2, & \text{if } x \ge 0\\ 3x + 15, & \text{if } -5 \le x < 0\\ -x - 5 & \text{if } x < -5 \end{cases}$$

3. (a) **Theorem.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = 2x + 5. The function f is bijective.

Proof. First, we will prove that f is injective. Let $x, y \in \mathbb{R}$. Suppose that f(x) = f(y). Then 2x + 5 = 2y + 5. Thus, 2x = 2y, so x = y. Thus, f is injective.

Now, we will prove that f is surjective. Let $y \in \mathbb{R}$. Let $x = \frac{y-5}{2}$. Then $f(x) = f\left(\frac{y-5}{2}\right) = 2\left(\frac{y-5}{2}\right) + 5 = y - 5 + 5 = y$. Thus, f is surjective. Since f is injective and surjective, f is bijective.

(b) **Theorem.** Let $g: (0, \infty) \to \mathbb{R}$ be the function defined by g(x) = 1/x. The function g is injective.

Proof. Let $x, y \in (0, \infty)$. Suppose that g(x) = g(y). Then 1/x = 1/y. Cross-multiplying, we get that y = x. Thus, g is injective.

The function g is not surjective, because there is no $x \in (0, \infty)$ such that g(x) = 0.

(c) **Theorem.** Let $h: \mathbb{R} \to [1, \infty)$ be the function defined by $h(x) = x^2 + 1$. The function h is surjective.

Proof. Let $y \in [1, \infty)$. Let $x = \sqrt{y-1}$. (Since $y \ge 1$, we have that $y-1 \ge 0$, so x exists.) Then, $h(x) = h(\sqrt{y-1}) = (\sqrt{y-1})^2 + 1 = (y-1) + 1 = y$. Thus, h is surjective.

The function h is not injective, because h(-1) = 2 and h(1) = 2.

- 4. (a) x = [6]
 - (b) x = [4]
 - (c) no solutions
 - (d) x = [2] or x = [5] or x = [8]
- 5. Theorem. Let \sim be the relation on $\mathbb{R}^2 \{(0,0)\}$ defined by $(x,y) \sim (w,z)$ if and only if there exists $k \in \mathbb{R} \{0\}$ such that x = kw and y = kz. The relation \sim is an equivalence relation.

Proof. First, we will show that ~ is reflexive. Let $(x, y) \in \mathbb{R}^2 - \{(0, 0)\}$. Then, $x = 1 \cdot x$ and $y = 1 \cdot y$, so $(x, y) \sim (x, y)$. Thus, ~ is reflexive.

Next, we will show that \sim is symmetric. Let $(x, y), (w, z) \in \mathbb{R}^2 - \{(0, 0)\}$. Suppose that $(x, y) \sim (w, z)$. Then, there exists $k \in \mathbb{R} - \{0\}$ such that x = kw and y = kz. Then, w = (1/k)x and z = (1/k)y. Since $1/k \in \mathbb{R} - \{0\}$, we have that $(w, z) \sim (x, y)$. Thus, \sim is symmetric.

Finally, we will show that \sim is transitive. Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2 - \{(0, 0)\}$. Suppose that $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. Then, there exists $k, j \in \mathbb{R} - \{0\}$ so that $x_1 = kx_2, y_1 = ky_2, x_2 = jx_3$, and $y_2 = jy_3$. Substituting, $x_2 = jx_3$ into the equation $x_1 = kx_2$, we get that $x_1 = k(jx_3)$. Thus, $x_1 = (kj)x_3$. Substituting $y_2 = jy_3$ into the equation $y_1 = ky_2$, we get that $y_1 = k(jy_3)$. Thus, $y_1 = (kj)y_3$. Since $kj \in \mathbb{R} - \{0\}$, we have that $(x_1, y_1) \sim (x_3, y_3)$. Thus, \sim is transitive. Since \sim is reflexive, symmetric, and transitive, \sim is an equivalence relation. 6. (a) Theorem. Let ~ be the relation on N defined by a ~ b if and only if there exists n ∈ Z such that a = 2ⁿb, for all a, b ∈ N. The relation ~ is an equivalence relation.

Proof. First, we will show that \sim is reflexive. Let $a \in \mathbb{N}$. Then, $a = 2^0 a$. Thus, $a \sim a$.

Next, we will show that \sim is symmetric. Let $a, b \in \mathbb{N}$. Suppose that $a \sim b$. Then, there exits $n \in \mathbb{Z}$ such that $a = 2^n b$. Then, $b = 2^{-n} a$. Since -n is an integer, we have that $b \sim a$. Thus, \sim is symmetric.

Finally, we will show that \sim is transitive. Let $a, b, c \in \mathbb{N}$. Suppose that $a \sim b$ and $b \sim c$. Then there exists $n, m \in \mathbb{Z}$ such that $a = 2^n b$ and $b = 2^m c$. Then, by substitution, $a = 2^n 2^m c$. Thus, $a = 2^{n+m} c$. Since n + m is an integer, $a \sim c$. Thus, \sim is transitive. Since \sim is reflexive, symmetric, and transitive, \sim is an equivalence relation.

(b) $[0] = \{0\}$

$$[3] = \left\{ \dots, \frac{3}{2^3}, \frac{3}{2^2}, \frac{3}{2}, 3, 3 \cdot 2, 3 \cdot 2^2, 3 \cdot 2^3, \dots \right\}$$

7. (a) **Theorem.** Let $n \in \mathbb{N}$. Then, $2+5+8+11+14+\cdots+(3n-1)=\frac{(n)(3n+1)}{2}$.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 2, so the formula holds in this case.

Induction Step Now suppose that the formula holds for some $n \in \mathbb{N}$. Then

$$2+5+8+\dots+(3n-1)+(3(n+1)-1) = \frac{n(3n+1)}{2}+(3(n+1)-1)$$
$$= \frac{n(3n+1)}{2}+3n+2$$
$$= \frac{n(3n+1)+2(3n+2)]}{2}$$
$$= \frac{3n^2+n+6n+4}{2}$$
$$= \frac{3n^2+7n+4}{2}$$
$$= \frac{(n+1)(3n+4)}{2}$$
$$= \frac{(n+1)(3(n+1)+1)}{2}$$

so the formula holds for n + 1 as well.

Therefore, by induction, the formula holds for all $n \in \mathbb{N}$.

(b) **Theorem.** Let $n \in \mathbb{N}$. Then, $2 + 4 + 8 + 16 + \dots + 2^n = 2^{n+1} - 2$.

Proof. We proceed by induction on n.

Base Case If n = 1, then both sides of the equation are equal to 2, so the formula holds in this case.

Induction Step Now suppose that the formula holds for some $n \in \mathbb{N}$. Then

$$2 + 4 + 8 + 16 + \dots + 2^{n} + 2^{n+1} = 2^{n+1} - 2 + 2^{n+1}$$
$$= 2 \cdot 2^{n+1} - 2$$
$$= 2^{n+2} - 2$$

so the formula holds for n + 1 as well.

Therefore, by induction, the formula holds for all $n \in \mathbb{N}$.