Answers to Practice Problems

Practice Problems from Textbook:

Chapter 1:

1.2.7.	(1) True	(4) True
	(2) False	(5) True
	(3) True	(6) True

1.2.8.	(1) True	(4) True
	(2) True	(5) True
	(3) False	(6) True

1.4.1.	(1)	(1) $P \wedge Q$	
		$(2) \ (P \lor Q) \to R$	
		(3) P	(1), Simplification
		$(4) \ P \lor Q$	(3), Addition
		(5) R	(2), (4), Modus Ponens

(2) This argument is invalid. If X is true, Y is true, and Z is false, then both of the premises are true, but the conclusion is false.

1.5.7. The negation is:

For all integers Q there exists a real number x > 0 such that for all positive integers k either $\ln(Q - x) \le 5$ or $x \le k$ and Q is not cacophonous.

Chapter 2:

2.2.2. (1) **Theorem.** Let n be an integer. Then, 1|n.

Proof. Since $1 \cdot n = n$, we have that 1|n.

(2) **Theorem.** Let n be an integer. Then, n|n.

Proof. Since $n \cdot 1 = n$, we have hat n|n.

(3) **Theorem.** Let m and n be integers. If m|n, then m|(-n).

Proof. Suppose that m|n. Then, there exists an integer k such that mk = n. Multiplying this equation by -1 we have that -mk = -n, which is equivalent to m(-k) = -n. Since -k is an integer, we have that m|(-n).

2.2.3. (1) **Theorem.** Let n be an integer. If n is even, then 3n is even.

Proof. Suppose that n is even. Then, there exists an integer k such that n = 2k. Then, 3n = 3(2k) = 2(3k). Since 3k is an integer, it follows that 3n is even. \Box

(2) **Theorem.** Let n be an integer. If n is odd, then 3n is odd.

Proof. Suppose that n is odd. Then, there exists an integer k such that n = 2k+1. Then, 3n = 3(2k+1) = 6k + 3 = 2(3k+1) + 1. Since 3k + 1 is an integer, we have that 3n is odd.

2.2.5. (1) **Theorem.** Let n and m be integers. Suppose that n and m are divisible by 3. Then, n + m is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and q so that n = 3p and m = 3q. Then, n + m = 3p + 3q = 3(p + q). Since p + q is an integer, it follows that 3|(n + m).

(2) **Theorem.** Let n and m be integers. Suppose that n and m are divisible by 3. Then, nm is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and q so that n = 3p and m = 3q. Then, nm = (3p)(3q) = 3(3pq). Since 3pq is an integer, we have that 3|nm.

2.4.4. **Theorem.** Let n be an integer. One of the two numbers n and n + 1 is even, and the other is odd.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k such that n = 2k. Then, n + 1 = 2k + 1, so n + 1 is odd. Thus, n is even and n + 1 is odd.

Case 2: Suppose that n is odd. Then there exists an integer k such that n = 2k + 1. Then, n + 1 = (2k + 1) + 1 = 2(k + 1), so n + 1 is even. Thus, n + 1 is even and n is odd.

2.5.5. (1) **Theorem.** For each real number x, there exists a real number y such that $e^x - y > 0$.

Proof. Let x be an arbitrary real number. Let y = -1. Then, $e^x > y$, since e^x is always positive. Thus, $e^x - y > 0$.

(2) **Theorem.** There exists a real number y such that for all real numbers x, the inequality $e^x - y > 0$ holds.

Proof. Let y = -1, and let x be an arbitrary real number. Then $e^x > y$, since e^x is always positive. Thus, $e^x - y > 0$.

(3) **Theorem.** For each real number y, there exists a real number x such that $e^x - y > 0$.

Proof. Let y be an arbitrary real number. If y < 1, let x = 0. Then, $e^x - y = 1 - y$. Since y < 1, we have that 1 - y > 0, so that $e^x - y > 0$. If $y \ge 1$, let $x = \ln(2y)$. Then, $e^x = e^{\ln(2y)} = 2y$. Thus, $e^x - y = 2y - y = y$, which is greater than 0.

(4) The statement is not true, so we prove the negation:

Theorem. For all real numbers x there exists a real number y such that the inequality $e^x - y \leq 0$ holds.

Proof. Let x be an arbitrary real number. Let $y = e^x + 1$. Then:

$$e^{x} - y = e^{x} - (e^{x} + 1) = -1$$

Thus, $e^x - y \le 0$.

Chapter 3:

- 3.2.2. (1) False (6) False
 - (2) True (7) False
 - (3) True (8) True
 - (4) True (9) True
 - (5) False

3.2.8. We have the following subset relationships:

- $C \subseteq D$ and $C \subseteq B$
- $E \subseteq D$
- $P \subseteq D$ and $P \subseteq B$
- $N \subseteq C, N \subseteq D$, and $N \subseteq B$
- $S \subseteq E$ and $S \subseteq D$
- D is not a subset of any of the other sets
- $B \subseteq D$

3.3.1. (1)
$$A \cup B = \{1, 2, 3, 4, 5, 7\}$$

- (2) $A \cap B = \{1, 3\}$
- (3) $A \times B = \{(1,1), (1,2), (1,3), (1,4), (3,1), (3,2), (3,3), (3,4), (5,1), (5,2), (5,3), (5,4), (7,1), (7,2), (7,3), (7,4)\}$
- (4) $A B = \{5, 7\}$
- (5) $B A = \{2, 4\}$

3.3.3. (1)
$$Y \cup Z = (1, 4]$$

- (2) $Z \cap W = \emptyset$
- (3) Y W = [2, 3]
- (4) $X \times W = \{(x, w) \mid 0 \le x < 5 \text{ and } 3 < w < 5\}$
- (5) $(X \cap Y) \cup Z = (1, 4]$
- (6) $X (Z \cup W) = [0, 1]$

3.3.9. Theorem. Let A and B be sets. Then, $(A \cup B) - A = B - (A \cap B)$

Proof. Let $x \in (A \cup B) - A$. Then, $x \in A \cup B$ and $x \notin A$. Since $x \in A \cup B$, we have that $x \in A$ or $x \in B$. Since we already know that $x \notin A$, we must have $x \in B$. Also, since $x \notin A$, we have that $x \notin A \cap B$. Thus, $x \in B - (A \cap B)$. Therefore, $(A \cup B) - A \subseteq B - (A \cap B)$.

Now, suppose that $x \in B - (A \cap B)$. Then, $x \in B$ and $x \notin A \cap B$. Since it is not the case that x is in both A and B, it must be the case that $x \notin A$ or $x \notin B$. Since we already know that $x \in B$, we can conclude that $X \notin A$. Also, since $x \in B$, we have that $x \in A \cup B$. Thus, we have that $x \in A \cup B$ and $x \notin A$, so we can conclude that $x \in (A \cup B) - A$. Therefore $B - (A \cap B) \subseteq (A \cup B) - A$.

Additional Problems:

1. (1) $A \to (B \lor C)$

(2) $\neg B$	
(3) $\neg C$	
$(4) \neg B \land \neg C$	(2), (3), Adjunction
$(5) \neg (B \lor C)$	(4), De Morgan's Law
$(5) \neg A$	(1), (5), Modus Tollens

- 2. This argument is invalid. If L is false, N is true, and P is false, then all of the premises are true, but the conclusion is false.
- 3. (a) **Theorem.** Let n and m be integers. If 2|n and 3|m, then 6|(3n+2m).

Proof. Suppose that 2|n and 3|m. Then, there exist integers p and q such that 2p = n and 3q = m. Then, 3n + 2m = 3(2p) + 2(3q) = 6p + 6q = 6(p+q). Since p+q is an integer, we have that 6|(3n+2m).

(b) **Theorem.** Let n and m be integers. If n|m, then $n^2|m^2$.

Proof. Suppose that n|m. Then, there exists an integer p such that np = m. Squaring both sides of this equation, we get that $(np)^2 = m^2$, which is equivalent to $n^2(p^2) = m^2$. Since p^2 is an integer, we can conclude that $n^2|m^2$. (c) **Theorem.** Let n be an integer. Then, $n^2 - n$ is even.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k so that n = 2k. Then, $n^2 - n = (2k)^2 - (2k) = 4k^2 - 2k = 2(2k^2 - k)$. Since $2k^2 - k$ is an integer, we have that $n^2 - n$ is even.

Case 2: Suppose that n is odd. Then there exists an integer k so that n = 2k + 1. Then, $n^2 - n = (2k + 1)^2 - (2k + 1) = 4k^2 + 2k = 2(2k^2 + k)$. Since $2k^2 + k$ is an integer, we have that $n^2 - n$ is even.

(d) **Theorem.** Let n be an integer. If 6 does not divide 2n, then 3 does not divide n.

Proof. We will prove the contrapositive: if 3|n then 6|2n. Suppose that 3|n. Then there exists an integer k so that 3k = n. Multiplying by 2, we have 6k = 2n. Thus, 6|2n.

4. **Theorem.** Let x be a non-zero rational number and let y be an irrational number. Then, $\frac{x}{y}$ is irrational.

Proof. Proof by contradiction. Suppose that $\frac{x}{y}$ is rational. Then, there exist integers a and b so that $\frac{x}{y} = \frac{a}{b}$. Note that if a = 0, then x = 0. Since x is non-zero, we know that $a \neq 0$. Also, since x is rational, there exist integers m and n so that $x = \frac{m}{n}$. By substitution into the equation $\frac{x}{y} = \frac{a}{b}$, we have that:

$$\frac{m/n}{y} = \frac{a}{b}$$

Since $a \neq 0$, we can solve this equation for y, obtaining:

$$y = \frac{mb}{na}$$

Since mb and na are integers, we see that y is rational, contradicting our assumption that y is irrational. Thus, $\frac{x}{y}$ is irrational.

- 5. (a) $\{6, 8, 9\}$
 - (b) $\{1, 2, 3, 8\}$
 - (c) $\{\emptyset, \{6\}, \{7\}, \{6, 7\}\}$
 - (d) $\{(1,7), (1,8), (2,7), (2,8), (8,7), (8,8)\}$

6. (a) **Theorem.** Let A, B, C be sets. Then, $(A \cup B) \cap C \subseteq A \cup (B \cap C)$.

Proof. Let $x \in (A \cup B) \cap C$. Then $x \in A \cup B$ and $x \in C$. Since $x \in A \cup B$, we have that $x \in A$ or $x \in B$. Case 1: Suppose that $x \in A$. Then, $x \in A \cup (B \cap C)$. Case 2: Suppose that $x \in B$. Since we also know that $x \in C$, we have that $x \in B \cap C$. Thus, $x \in A \cup (B \cap C)$. In both cases, we have that $x \in A \cup (B \cap C)$. Thus, $(A \cup B) \cap C \subseteq A \cup (B \cap C)$. \Box

(b) The statement is not true, so we will provide a counter example. Consider the following sets:

$$A = \{1, 2, 3\}$$
$$B = \{2\}$$
$$C = \{3\}$$

Then, $A - (B \cap C) = \{1, 2, 3\}$ and $(A - B) \cap (A - C) = \{1\}$.

7. Theorem. Let A, B, C, D be sets. Then, $(A - B) \cup (C - D) \subseteq (A \cup C) - (B \cap D)$.

Proof. Let $x \in (A - B) \cup (C - D)$. Then $x \in A - B$ or $x \in C - D$, so we have two cases.

Case 1: Suppose that $x \in A - B$. Then $x \in A$ and $x \notin B$. Since $x \in A$, we have that $x \in A \cup C$. Since $x \notin B$, it is not the case that $x \in B$ and $x \in D$. Thus, $x \notin B \cap D$. Thus, $x \in (A \cup C) - (B \cap D)$.

Case 2: Suppose that $x \in C - D$. Then $x \in C$ and $x \notin D$. Since $x \in C$, we have that $x \in A \cup C$. Since $x \notin D$, we have that $x \notin B \cap D$. Thus, $x \in (A \cup C) - (B \cap D)$.

In both cases, we have that $x \in (A \cup C) - (B \cap D)$. Therefore, we have that $(A - B) \cup (C - D) \subseteq (A \cup C) - (B \cap D)$.