Answers to Practice Problems

Practice Problems from Textbook:

Chapter 1:
1.2.7. (1) True (4) True
(2) False (5) True
(3) True (6) True
1.2.8. (1) True (4) True
(2) True (5) True
(3) False (6) True
14.1. (1) (1) PAQ
(2) (PVQ)—= R
(3) P (1), Simplification
(4) PV Q (3), Addition
(5) R (2), (4), Modus Ponens

(2) This argument is invalid. If X is true, Y is true, and Z is false, then both of the

premises are true, but the conclusion is false.

1.5.7. The negation is:

For all integers () there exists a real number x > 0 such that for all positive integers k

either In(Q — z) <5 or z < k and @ is not cacophonous.

Chapter 2:

2.2.2. (1) Theorem. Let n be an integer. Then, 1|n.

Proof. Since 1-n = n, we have that 1|n. O



2.2.3.

2.2.5.

(2)

Theorem. Let n be an integer. Then, n|n.
Proof. Since n -1 = n, we have hat n|n. ]
Theorem. Let m and n be integers. If m|n, then m|(—n).

Proof. Suppose that m|n. Then, there exists an integer k such that mk = n.
Multiplying this equation by —1 we have that —mk = —n, which is equivalent to

m(—k) = —n. Since —k is an integer, we have that m|(—n). O
Theorem. Let n be an integer. If n is even, then 3n is even.

Proof. Suppose that n is even. Then, there exists an integer k such that n = 2k.
Then, 3n = 3(2k) = 2(3k). Since 3k is an integer, it follows that 3n is even. [

Theorem. Let n be an integer. If n is odd, then 3n is odd.

Proof. Suppose that n is odd. Then, there exists an integer k such that n = 2k+1.
Then, 3n = 3(2k+ 1) = 6k +3 = 2(3k + 1) + 1. Since 3k + 1 is an integer, we
have that 3n is odd. O]

Theorem. Let n and m be integers. Suppose that n and m are divisible by 3.
Then, n 4+ m is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and g so that n = 3p
and m = 3¢q. Then, n+m = 3p+ 3¢ = 3(p + ¢). Since p + ¢ is an integer, it
follows that 3|(n + m). O

Theorem. Let n and m be integers. Suppose that n and m are divisible by 3.

Then, nm is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and ¢ so that n = 3p
and m = 3q. Then, nm = (3p)(3q) = 3(3pq). Since 3pq is an integer, we have
that 3|nm. O



2.4.4. Theorem. Let n be an integer. One of the two numbers n and n+ 1 is even, and the
other is odd.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k£ such that n = 2k.
Then, n4+1 =2k +1,son -+ 1is odd. Thus, n is even and n + 1 is odd.

Case 2: Suppose that n is odd. Then there exists an integer k such that n = 2k + 1.
Then, n+1=(2k+1)+1=2(k+1),s0n+11is even. Thus, n + 1 is even and n is
odd. ]

2.5.5. (1) Theorem. For each real number x, there exists a real numbery such that e® —y > 0.

Proof. Let x be an arbitrary real number. Let y = —1. Then, e* > y, since e* is

always positive. Thus, e* —y > 0. [

(2) Theorem. There exists a real number y such that for all real numbers x, the

mequality e* —y > 0 holds.

Proof. Let y = —1, and let x be an arbitrary real number. Then e® > y, since e*

is always positive. Thus, e* —y > 0. O]
(3) Theorem. For each real numbery, there exists a real number x such that e* —y > 0.

Proof. Let y be an arbitrary real number. If y < 1,let z = 0. Then, e*—y = 1—y.
Since y < 1, we have that 1 —y > 0, so that e* —y > 0.

If y > 1, let * = In(2y). Then, e = ) = 2y, Thus, e —y = 2y —y = v,
which is greater than 0. O

(4) The statement is not true, so we prove the negation:

Theorem. For all real numbers x there exists a real number y such that the

mequality e* —y < 0 holds.
Proof. Let x be an arbitrary real number. Let y = e* + 1. Then:
e —y=e"—(e"+1)=-1

Thus, e* —y < 0. O



Chapter 3:

3.2.2. (1) False (6) False
(2) True (7) False
(3) True (8) True
(4) True (9) True
(5) False

3.2.8. We have the following subset relationships:

e CCDand CCBHB

e ECD

e PCDand PCBHB

e NCC,NCD,and NCB

e SCFand SCD

e D is not a subset of any of the other sets

e BCD

3.3.1. (1) AuB={1,2,3,4,5,7}
(2) AnB={1,3}
(3) Ax B ={(1,1),(1,2),(1,3),(1,4),(3,1),(3,2),(3,3),(3,4), (5,1), (5,2), (5, 3),
(5,4),(7,1),(7,2),(7,3),(7,4)}
(4) A—B={5T7}

3.3.3.



3.3.9. Theorem. Let A and B be sets. Then, (AUB)—A=B—(ANB)

Proof. Let x € (AUB) — A. Then, x € AUB and z ¢ A. Since v € AU B, we
have that x € A or x € B. Since we already know that z ¢ A, we must have x € B.
Also, since z ¢ A, we have that x ¢ AN B. Thus, © € B — (AN B). Therefore,
(AUB)—AC B—(ANB).

Now, suppose that z € B — (AN B). Then, z € B and x ¢ AN B. Since it is not the
case that z is in both A and B, it must be the case that x € A or x ¢ B. Since we
already know that x € B, we can conclude that X ¢ A. Also, since x € B, we have
that x € AU B. Thus, we have that x € AU B and = ¢ A, so we can conclude that
x € (AU B) — A. Therefore B— (AN B)C (AUB) — A. O

Additional Problems:

1.

(1)

(2)

(3)

(4) -BA-C (2), (3), Adjunction

(5) ~(BVC) (4), De Morgan’s Law

(5) ~A (1), (5), Modus Tollens

2. This argument is invalid. If L is false, N is true, and P is false, then all of the premises

are true, but the conclusion is false.

3. (a) Theorem. Let n and m be integers. If 2|n and 3|m, then 6|(3n + 2m).

Proof. Suppose that 2|n and 3|m. Then, there exist integers p and g such that
2p = n and 3¢ = m. Then, 3n + 2m = 3(2p) + 2(3¢q) = 6p + 6 = 6(p + q). Since
p + ¢ is an integer, we have that 6|(3n + 2m). O

(b) Theorem. Let n and m be integers. If n|m, then n?|m?.

Proof. Suppose that n|m. Then, there exists an integer p such that np = m.
Squaring both sides of this equation, we get that (np)* = m?, which is equivalent

to n?(p*) = m?. Since p? is an integer, we can conclude that n?|m?. O



()

Theorem. Let n be an integer. Then, n®> —n is even.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k£ so that n = 2k.
Then, n? —n = (2k)? — (2k) = 4k* — 2k = 2(2k* — k). Since 2k? — k is an integer,
we have that n? —n is even.

Case 2: Suppose that n is odd. Then there exists an integer k so that n = 2k + 1.
Then, n? —n = (2k + 1) — (2k + 1) = 4k® + 2k = 2(2k* + k). Since 2k + k is an

integer, we have that n? — n is even. O
Theorem. Let n be an integer. If 6 does not divide 2n, then 3 does not divide n.

Proof. We will prove the contrapositive: if 3|n then 6|/2n. Suppose that 3|n. Then
there exists an integer k so that 3k = n. Multiplying by 2, we have 6k = 2n.
Thus, 6]2n. O

4. Theorem. Let x be a non-zero rational number and let y be an irrational number.

T

Then, m 18 1rrational.

Proof. Proof by contradiction. Suppose that 5 is rational. Then, there exist integers

a and b so that g = 7. Note that if a = 0, then z = 0. Since z is non-zero, we know

that a # 0. Also, since x is rational, there exist integers m and n so that x = ™. By

substitution into the equation § =

%, we have that:

m/n _ a

Yy b

Since a # 0, we can solve this equation for y, obtaining:

mb

Yy=—
na

Since mb and na are integers, we see that y is rational, contradicting our assumption

that y is irrational. Thus, % is irrational. O]

)
b)
(©)
(@)

5. (a
(

{6,8,9}

{1,2,3,8}

{0.{6}.{7}.{6,7}}
{(1,7),(1,8),(2,7),(2,8).(8,7),(8,8)}



6. (a) Theorem. Let A, B,C be sets. Then, (AUB)NC C AU(BNC(C).

Proof. Let v € (AUB)NC. Thenz € AUB and = € C. Since z € AU B, we
have that x € A or x € B.

Case 1: Suppose that z € A. Then, z € AU(BNCOC).

Case 2: Suppose that x € B. Since we also know that x € C, we have that
re€ BNC. Thus, x € AU (BNC).

In both cases, we have that z € AU(BNC). Thus, (AUB)NC C AU(BNC). O

(b) The statement is not true, so we will provide a counter example. Consider the

following sets:

A = {1,2,3}
B = {2}
C = {3}

Then, A— (BNC)={1,2,3} and (A—B)N(A-C) ={1}.

7. Theorem. Let A, B,C, D be sets. Then, (A— B)U(C —D)C (AUC)— (BND,).

Proof. Let x € (A—B)U(C — D). Thenx € A— B or z € C' — D, so we have two

cases.

Case 1: Suppose that t € A — B. Then z € A and = ¢ B. Since xz € A, we have that
x € AUC. Since x ¢ B, it is not the case that v € B and z € D. Thus, x ¢ BN D.
Thus, z € (AUC) — (BN D).

Case 2: Suppose that x € C' — D. Then x € C and x ¢ D. Since x € C, we have that
x € AUC. Since z ¢ D, we have that x ¢ BN D. Thus, z € (AUC) — (BN D).

In both cases, we have that + € (AU C) — (B N D). Therefore, we have that
(A-B)U(C—-D)C (AUuC)—(BND). O



