
Answers to Practice Problems

Practice Problems from Textbook:

Chapter 1:

1.2.7. (1) True

(2) False

(3) True

(4) True

(5) True

(6) True

1.2.8. (1) True

(2) True

(3) False

(4) True

(5) True

(6) True

1.4.1. (1) (1) P ∧Q

(2) (P ∨Q) → R

(3) P (1), Simplification

(4) P ∨Q (3), Addition

(5) R (2), (4), Modus Ponens

(2) This argument is invalid. If X is true, Y is true, and Z is false, then both of the

premises are true, but the conclusion is false.

1.5.7. The negation is:

For all integers Q there exists a real number x > 0 such that for all positive integers k

either ln(Q− x) ≤ 5 or x ≤ k and Q is not cacophonous.

Chapter 2:

2.2.2. (1) Theorem. Let n be an integer. Then, 1|n.

Proof. Since 1 · n = n, we have that 1|n.
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(2) Theorem. Let n be an integer. Then, n|n.

Proof. Since n · 1 = n, we have hat n|n.

(3) Theorem. Let m and n be integers. If m|n, then m|(−n).

Proof. Suppose that m|n. Then, there exists an integer k such that mk = n.

Multiplying this equation by −1 we have that −mk = −n, which is equivalent to

m(−k) = −n. Since −k is an integer, we have that m|(−n).

2.2.3. (1) Theorem. Let n be an integer. If n is even, then 3n is even.

Proof. Suppose that n is even. Then, there exists an integer k such that n = 2k.

Then, 3n = 3(2k) = 2(3k). Since 3k is an integer, it follows that 3n is even.

(2) Theorem. Let n be an integer. If n is odd, then 3n is odd.

Proof. Suppose that n is odd. Then, there exists an integer k such that n = 2k+1.

Then, 3n = 3(2k + 1) = 6k + 3 = 2(3k + 1) + 1. Since 3k + 1 is an integer, we

have that 3n is odd.

2.2.5. (1) Theorem. Let n and m be integers. Suppose that n and m are divisible by 3.

Then, n+m is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and q so that n = 3p

and m = 3q. Then, n + m = 3p + 3q = 3(p + q). Since p + q is an integer, it

follows that 3|(n+m).

(2) Theorem. Let n and m be integers. Suppose that n and m are divisible by 3.

Then, nm is divisible by 3.

Proof. Since n and m are divisible by 3, there exist integers p and q so that n = 3p

and m = 3q. Then, nm = (3p)(3q) = 3(3pq). Since 3pq is an integer, we have

that 3|nm.
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2.4.4. Theorem. Let n be an integer. One of the two numbers n and n+ 1 is even, and the

other is odd.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k such that n = 2k.

Then, n+ 1 = 2k + 1, so n+ 1 is odd. Thus, n is even and n+ 1 is odd.

Case 2: Suppose that n is odd. Then there exists an integer k such that n = 2k + 1.

Then, n+ 1 = (2k + 1) + 1 = 2(k + 1), so n+ 1 is even. Thus, n+ 1 is even and n is

odd.

2.5.5. (1) Theorem. For each real number x, there exists a real number y such that ex − y > 0.

Proof. Let x be an arbitrary real number. Let y = −1. Then, ex > y, since ex is

always positive. Thus, ex − y > 0.

(2) Theorem. There exists a real number y such that for all real numbers x, the

inequality ex − y > 0 holds.

Proof. Let y = −1, and let x be an arbitrary real number. Then ex > y, since ex

is always positive. Thus, ex − y > 0.

(3) Theorem. For each real number y, there exists a real number x such that ex − y > 0.

Proof. Let y be an arbitrary real number. If y < 1, let x = 0. Then, ex−y = 1−y.

Since y < 1, we have that 1− y > 0, so that ex − y > 0.

If y ≥ 1, let x = ln(2y). Then, ex = eln(2y) = 2y. Thus, ex − y = 2y − y = y,

which is greater than 0.

(4) The statement is not true, so we prove the negation:

Theorem. For all real numbers x there exists a real number y such that the

inequality ex − y ≤ 0 holds.

Proof. Let x be an arbitrary real number. Let y = ex + 1. Then:

ex − y = ex − (ex + 1) = −1

Thus, ex − y ≤ 0.
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Chapter 3:

3.2.2. (1) False

(2) True

(3) True

(4) True

(5) False

(6) False

(7) False

(8) True

(9) True

3.2.8. We have the following subset relationships:

• C ⊆ D and C ⊆ B

• E ⊆ D

• P ⊆ D and P ⊆ B

• N ⊆ C, N ⊆ D, and N ⊆ B

• S ⊆ E and S ⊆ D

• D is not a subset of any of the other sets

• B ⊆ D

3.3.1. (1) A ∪B = {1, 2, 3, 4, 5, 7}

(2) A ∩B = {1, 3}

(3) A×B = {(1, 1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2), (3, 3), (3, 4), (5, 1), (5, 2), (5, 3),
(5, 4), (7, 1), (7, 2), (7, 3), (7, 4)}

(4) A−B = {5, 7}

(5) B − A = {2, 4}

3.3.3. (1) Y ∪ Z = (1, 4]

(2) Z ∩W = ∅

(3) Y −W = [2, 3]

(4) X ×W = {(x,w) | 0 ≤ x < 5 and 3 < w < 5}

(5) (X ∩ Y ) ∪ Z = (1, 4]

(6) X − (Z ∪W ) = [0, 1]
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3.3.9. Theorem. Let A and B be sets. Then, (A ∪B)− A = B − (A ∩B)

Proof. Let x ∈ (A ∪ B) − A. Then, x ∈ A ∪ B and x ̸∈ A. Since x ∈ A ∪ B, we

have that x ∈ A or x ∈ B. Since we already know that x ̸∈ A, we must have x ∈ B.

Also, since x ̸∈ A, we have that x ̸∈ A ∩ B. Thus, x ∈ B − (A ∩ B). Therefore,

(A ∪B)− A ⊆ B − (A ∩B).

Now, suppose that x ∈ B − (A ∩ B). Then, x ∈ B and x ̸∈ A ∩ B. Since it is not the

case that x is in both A and B, it must be the case that x ̸∈ A or x ̸∈ B. Since we

already know that x ∈ B, we can conclude that X ̸∈ A. Also, since x ∈ B, we have

that x ∈ A ∪ B. Thus, we have that x ∈ A ∪ B and x ̸∈ A, so we can conclude that

x ∈ (A ∪B)− A. Therefore B − (A ∩B) ⊆ (A ∪B)− A.

Additional Problems:

1. (1) A → (B ∨ C)

(2) ¬B
(3) ¬C
(4) ¬B ∧ ¬C (2), (3), Adjunction

(5) ¬(B ∨ C) (4), De Morgan’s Law

(5) ¬A (1), (5), Modus Tollens

2. This argument is invalid. If L is false, N is true, and P is false, then all of the premises

are true, but the conclusion is false.

3. (a) Theorem. Let n and m be integers. If 2|n and 3|m, then 6|(3n+ 2m).

Proof. Suppose that 2|n and 3|m. Then, there exist integers p and q such that

2p = n and 3q = m. Then, 3n+ 2m = 3(2p) + 2(3q) = 6p+ 6q = 6(p+ q). Since

p+ q is an integer, we have that 6|(3n+ 2m).

(b) Theorem. Let n and m be integers. If n|m, then n2|m2.

Proof. Suppose that n|m. Then, there exists an integer p such that np = m.

Squaring both sides of this equation, we get that (np)2 = m2, which is equivalent

to n2(p2) = m2. Since p2 is an integer, we can conclude that n2|m2.
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(c) Theorem. Let n be an integer. Then, n2 − n is even.

Proof. There are two cases: either n is even or n is odd.

Case 1: Suppose that n is even. Then there exists an integer k so that n = 2k.

Then, n2 −n = (2k)2 − (2k) = 4k2 − 2k = 2(2k2 − k). Since 2k2 − k is an integer,

we have that n2 − n is even.

Case 2: Suppose that n is odd. Then there exists an integer k so that n = 2k+1.

Then, n2 − n = (2k+ 1)2 − (2k+ 1) = 4k2 + 2k = 2(2k2 + k). Since 2k2 + k is an

integer, we have that n2 − n is even.

(d) Theorem. Let n be an integer. If 6 does not divide 2n, then 3 does not divide n.

Proof. We will prove the contrapositive: if 3|n then 6|2n. Suppose that 3|n. Then
there exists an integer k so that 3k = n. Multiplying by 2, we have 6k = 2n.

Thus, 6|2n.

4. Theorem. Let x be a non-zero rational number and let y be an irrational number.

Then, x
y
is irrational.

Proof. Proof by contradiction. Suppose that x
y
is rational. Then, there exist integers

a and b so that x
y
= a

b
. Note that if a = 0, then x = 0. Since x is non-zero, we know

that a ̸= 0. Also, since x is rational, there exist integers m and n so that x = m
n
. By

substitution into the equation x
y
= a

b
, we have that:

m/n

y
=

a

b

Since a ̸= 0, we can solve this equation for y, obtaining:

y =
mb

na

Since mb and na are integers, we see that y is rational, contradicting our assumption

that y is irrational. Thus, x
y
is irrational.

5. (a) {6, 8, 9}

(b) {1, 2, 3, 8}

(c) {∅, {6}, {7}, {6, 7}}

(d) {(1, 7), (1, 8), (2, 7), (2, 8), (8, 7), (8, 8)}
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6. (a) Theorem. Let A,B,C be sets. Then, (A ∪B) ∩ C ⊆ A ∪ (B ∩ C).

Proof. Let x ∈ (A ∪ B) ∩ C. Then x ∈ A ∪ B and x ∈ C. Since x ∈ A ∪ B, we

have that x ∈ A or x ∈ B.

Case 1: Suppose that x ∈ A. Then, x ∈ A ∪ (B ∩ C).

Case 2: Suppose that x ∈ B. Since we also know that x ∈ C, we have that

x ∈ B ∩ C. Thus, x ∈ A ∪ (B ∩ C).

In both cases, we have that x ∈ A∪(B∩C). Thus, (A∪B)∩C ⊆ A∪(B∩C).

(b) The statement is not true, so we will provide a counter example. Consider the

following sets:

A = {1, 2, 3}

B = {2}

C = {3}

Then, A− (B ∩ C) = {1, 2, 3} and (A−B) ∩ (A− C) = {1}.

7. Theorem. Let A,B,C,D be sets. Then, (A−B) ∪ (C −D) ⊆ (A ∪ C)− (B ∩D).

Proof. Let x ∈ (A − B) ∪ (C − D). Then x ∈ A − B or x ∈ C − D, so we have two

cases.

Case 1: Suppose that x ∈ A− B. Then x ∈ A and x ̸∈ B. Since x ∈ A, we have that

x ∈ A ∪ C. Since x ̸∈ B, it is not the case that x ∈ B and x ∈ D. Thus, x ̸∈ B ∩D.

Thus, x ∈ (A ∪ C)− (B ∩D).

Case 2: Suppose that x ∈ C −D. Then x ∈ C and x ̸∈ D. Since x ∈ C, we have that

x ∈ A ∪ C. Since x ̸∈ D, we have that x ̸∈ B ∩D. Thus, x ∈ (A ∪ C)− (B ∩D).

In both cases, we have that x ∈ (A ∪ C) − (B ∩ D). Therefore, we have that

(A−B) ∪ (C −D) ⊆ (A ∪ C)− (B ∩D).
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